HINDUSTHAN COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE - 641 028

BSC. MATHEMATICS SCHEME OF EXAMINATIONS-CBCS PATTERN

(For the Students admitted from the Academic year 2016 - 2017 and onwards)

	(For the Students admitted from the Academic y		10 - 20				
		ΘK		MAX	AMUM	MARKS	
CODE NO	SUBJECT	LECTURE HRS/ WEEK	EXAM DURATION HRS	IE	EE	TOTAL	CREDIT POINTS
	First Semester						
Part I							
16LAT01 /	Tamil-I /Hindi-I/Malayalam-I/French - I	6	3	25	75	100	3
16LAH01/ 16LAH01/ 16LAF01	Talini-1/Tinidi-Divialayalam-Different - 1	0	3	23	73	100	3
Part II							
16ENG01	English – I	6	3	25	75	100	3
Part III			1		ı		
16MAU01	Classical Algebra	6	3	25	75	100	4
16MAU02	Calculus	6	3	25	75	100	4
16MAU03	Allied: Mathematical Statistics-I (Mat)	6	3	25	75	100	4
Second Semes	ster						
Part I			1		1	1	•
16LAT02 /	Tamil-II/Hindi-II/Malayalam-II/French-II	6	3	25	75	100	3
16LAH02/							
16LAM02/							
16LAF02 Part II							
16ENG02	English – II	6	3	25	75	100	3
Part III	Liigiisii – Ii	0	<u> </u>	23	13	100	3
16MAU04	Analytical Geometry	5	3	25	75	100	4
16MAU05	Trigonometry, Vector Calculus and	6	3	25	75	100	4
	Fourier Transforms	,					
16MAU06	Allied: Mathematical Statistics-II (Mat)	5	3	25	75	100	4
Part IV			ı		1	1	1
16GSU01	Value Education- Human Rights	2	-	100	-	100	2
	Third Semester						
Part I	T- will HI/II' at HI/M-11-w HI/	_	2	25	75	100	
16LAT03 / 16LAH03/	Tamil-III/Hindi-III/Malayalam-III / French-III	5	3	25	75	100	3
16LAH03/ 16LAM03/	1 TORCH-III						
16LAF03							
Part II						<u> </u>	
	Partial III			25	7.5	100	
16ENG03	English – III	6	3	25	75	100	3

Part III							
16MAU07	Statics	4	3	25	75	100	4
16MAU08	Differential Equations and Laplace	4	3	25	75	100	4
	Transforms						-
16MAU09	Programming in C	2	3	25	75	100	3
16MAU10	Practical I : Programming in C	2	3	40	60	100	3
16MAU11	Allied: Accountancy - I (Com)	4	3	25	75	100	4
Part IV							
16GSU02	Environmental Studies	2	-	100	-	100	2
Fourth Seme	ster						
Part I							
16LAT04 /	Tamil-IV /Hindi-IV/Malayalam-IV /	6	3	25	75	100	3
16LAH04/	French - IV						
16LAM04/							
16LAF04							
Part II		ı	1	T			
16ENG04	English - IV	6	3	25	75	100	3
Part III		Ι .	T _				
16MAU12	Dynamics	4	3	25	75	100	4
16MAU13	Discrete Mathematics	4	3	25	75	100	4
16MAU14	Mathematical Softwares	2	3	25	75	100	2
16MAU15	Practical II : Mathematical Softwares	2	3	40	60	100	2
16MAU16	Allied : Accountancy - II (Com)	4	3	25	75	100	4
Part IV	GIND I I		1	100		100	
16GSU03	Skill Based : Internet Security	2	_	100	-	100	2
Part V		I	I	100		100	
16GSU04	Extension Activity	-	-	100	-	100	2
Fifth Semeste							
Part III	Dool Analysis I	6	3	25	75	100	5
16MAU17	Real Analysis- I	6	3	25		100	
16MAU18	Complex Analysis-I	6	3	25	75	100	4
16MAU19	Modern Algebra-I	6	3	25	75	100	4
16MAU20	Operations Research-I	6	3	25 25	75	100	4
16MAU21	Elective I: a)Numerical Methods-I (OR)	6	3	25	75	100	4
	b)Astronomy-I						
Part IV	b)///sitoliomy-1						
16GSU05	Non Major Elective: General Awareness	_	l -	100	_	100	2
Part V	11011111111111111111111111111111111111			100		100	
16GSU06	Law of Ethics	_	_	100	_	100	2
Sixth Semeste				100		100	
Part III							
16MAU22	Real Analysis- II	5	3	25	75	100	5
16MAU23	Complex Analysis-II	5	3	25	75	100	4
16MAU24	Modern Algebra-II	5	3	25	75	100	4
16MAU25	Operations Research-II	5	3	25	75	100	4
16MAU26	Fuzzy sets and Fuzzy Logic	5	3	25	75	100	4
16MAU27	Elective -II:	5	3	25	75	100	4
	a) Numerical Methods-II (OR)						
	b) Astronomy-II						
	-						140

Code No	Subject	Semester No
16MAU01	CLASSICAL ALGEBRA	I
Objective:	To gain knowledge about the convergence of series and solving equations.	
Unit No	Topics	Hours
Unit I	Binomial Theorem Binomial – Positive integral index and Exponential theorems – their statements and proofs – their immediate application to summation and approximation only. Chapter: 3 &4	14
Unit II	Logarithmic Series Modulus of a real number limit of a sequence – upper and lower limit of a sequence – Logarithmic series theorem – Summation and approximation. Chapter: 4	14
Unit III	Convergence and Divergence Convergence and Divergence of series – Definitions, elementary results comparison tests – Cauchy's tests. Absolute convergence – series of positive terms – Cauchy's condensation test – Raabe's test. Chapter: 2	14
Unit IV	Theory of equations Fundamental theorem of algebra – Roots of an equation – Relations connecting the roots and coefficients – certain standard transformations – Descarte's rule of signs – symmetric function of roots – Reciprocal equations. Chapter:6	15
Unit V	Roots of equation and approximation Newton's method of approximation to a root – Horner's method. Multiple roots – Rolle's theorem – position of real roots of $f(x) = 0$. Chapter:6	15

1. Manicavachagom Pillai .T.K., Natarajan .T, Ganapathy .K.S. – "Algebra Vol I", S. Viswanatham -(Printers & Publishers Private Ltd-2006).

Reference Books:

1. Kandasamy .P and Thilagavathy .K — "Mathematics for B.Sc. Branch I -Vol. I- (For B.Sc-I semester)", S. Chand and Company Ltd, New Delhi, 2004.

Code No	Subject	Semester No
16MAU02	CALCULUS	I
Objective:	To gain the knowledge about curvature and integration of variables	
Unit No	Topics	Hours
Unit I	Curvature of Plane Curves Curvature – Circle, radius and centre of curvature – Cartesian formula for the radius of curvature – The coordinates of the centre of curvature – Evolutes and involutes – Radius of curvature when the curve is given in polar co-ordinates – Pedal equation of a curve. Chapter 10: 2.1-2.7	14
Unit II	Integration Integration of irrational functions — Properties of definite integrals — Integration by parts — Reduction formulae. Chapter 1:8,11,12,13	14
Unit III	Multiple Integrals Evaluation of the double integral — Change of order of integration — Double integral in polar co-ordinates — Triple integrals — Applications of Multiple integrals . Chapter 5: 1,2,2.1,2.2,3.1,4,5.1,5.2,5.3,5.4	14
Unit IV	Change of Variables Jacobian – Two important results regarding Jacobians – Change of variables in the case of two variables – Change of variables in the case of three variables. Chapter 6: 1,2,2.1,2.2	15
Unit V	Improper Integrals Beta and Gamma functions — Recurrence formula for Gamma functions — Properties of Beta functions — Relation between Beta and Gamma functions — Applications of Gamma functions to multiple integrals. Chapter 7: 2.1,2.2,2.3,3,4,5,6	15

- 1. Narayanan.S and Pillai .T.K.M. "Calculus, Vol 1", Viswanathan Publishers, 2007. For Unit 1
- 2. Narayanan.S and Pillai .T.K.M., "Calculus, Vol 2", Viswanathan Publishers, 2007.For Units II to V

Reference Book:

1. Kandasamy .P & Thilagarathy .K—"Mathematics for BSc – Vol I and .II", S.Chand and Co-2005

Code No	Subject	Semester No
16MAU03	ALLIED: MATHEMATICAL STATISTICS - I	I
Objective:	To apply Statistics Methods for Mathematical Problems	
Unit No	Topies	Hours
Unit I	Probability Definition of Probability (Classical, Statistical and Axiomatic) – Addition and Multiplication laws of Probability – Independence of Events – Conditional Probability – Baye's Theorem – Simple Problems Chapter 3: 3.4, 3.4.1, 3.5, 3.5.1, 3.8.5, 3.9.1, 3.11, 3.12 Chapter 4: 4.2,4.2.1	14
Unit II	Mathematical Expectation Random Variables (Discrete and Continuous) — Distribution Function — Expectation and Moments — Moment Generating Function — Probability Generating Function — Simple Problems. Chapter 5: 5.2,5.3,5.4,5.4.1 Chapter 7: 7.1,7.1.2, 7.9,7.9.1	14
Unit III	Chebychev's inequality Cumulants — Properties of Cumulants — Characteristic Function — Properties — Chebychev's Inequality — Simple Problems in Chebychev's inequality. Chapter 7:7.2,7.2.1, 7.3,7.3.1, 7.5	14
Unit IV	Correlation and Regression Concept of Bivariate Distribution — Correlation — Karl Pearson's Coefficient of Correlation — Rank Correlation — Linear Regression Chapter 10: 10.1,10.2,10.3,10.4,10.4.1, 10.7,10.7.1,10.7.2,10.7.3 Chapter11:11.1,11.2,11.2.1,11.2.2	15
Unit V	Probability Distribution function Standard distributions: Discrete distributions – Binomial, Poisson – Continuous Distributions – Normal, Exponential Distributions. Chapter 8: 8.4,8.4.1,8.4.2,8.4.6,8.5,8.5.2,8.5.4,8.5.5 Chapter 9: 9.2,9.2.1,9.2.2,9.2.3,9.2.4,9.2.6,9.2.7,9.8,9.8.1	15

1. Gupta .S.C. & Kapoo .V.K. — "Fundamentals of Mathematical Statistics", Sultan & sons publications.

Reference Book:

1. Hogg .R.V. & Craig .A.T. — "Introduction to Mathematical Statistics", Macmillan, publications (1998).

Code No	Subject	Semester No
16MAU04	ANALYTICAL GEOMETRY	II
Objective:	On successful completion of the course students should have gained about the regular geometrical figures and their properties.	knowledge
Unit No	Topies	Hours
Unit I	2 -Dimensional Geometry Polar coordinates – Conic – Parabola, Ellipse, Hyperbola – Chord, Tangent and Normal – simple problems. Chapter 9: 9.1, Chapter 5: 5.1 -5.7, Chapter 6: 6.1 -6.6	12
Unit II	3- Dimensional Geometry Equation of a straight line – conditions for various situations of a line – projection of a line – coplanarity of two lines – Shortest distance (S.D) and equation of S.D between two skew lines –simple problems only. Chapter 4: 4.1-4.6	
Unit III	Sphere Equation of a sphere – Standard equation of a sphere results based on the properties of a sphere – tangent plane to a sphere – simple problems. Chapter 5: 5.1 -5.4	12
Unit IV	Cone and cylinder Cone – Equation of a Cone – Equation of a Cone whose vertex is at the origin – Quadratic Cone with vertex at the origin. Cylinder: Equation of a Cylinder – Quadratic surfaces. Chapter 6: 6.1 – 6.7	12
Unit V	Conicoids Notation — Enveloping cone tangent plane — simple problems. Chapter 6: 6.9 – 6.12	12

- 1. Durai Pandian.P & others "Analytical Geometry (2- Dimensional)" (Unit 1).
- 2. Durai Pandian.P & others "Analytical Geometry (3 Dimensional)" (Unit 11,111,1V, V).(2003)

Reference Book:

1. Pillai .T.K.M. and Others - "Analytical Geometry of 2D" .Visvanathan Publications-2006.

Code No	Subject	Semester No
16MAU05	TRIGONOMETRY, VECTOR CALCULUS AND FOURIER TRANSFORMS	
Objective:	To gain knowledge about expansion of trigonometric functions, line i surface integral, volume integral and Fourier series.	ntegral,
Unit No	Topics	Hours
Unit I	Expansion Series Expansion of $\cos \theta$, $\sin \theta$, in a series of cosines and sines of multiples of θ – Expansions of $\cos \theta$ and $\sin \theta$ in powers of sines and $\cos \theta$ – Expansion of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in powers of θ – Hyperbolic functions and Inverse Hyperbolic functions Chapter 3: 1,2,3,4,5	14
Unit II	Logarithm of complex quantities Logarithm of complex quantities — Summation of series — when angles are in arithmetic progression — C + is method of summation — method of differences. Chapter 5: 5, Chapter 6: 1,2	14
Unit III	Scalar and vector fields Differentiation of vectors – Gradient, Divergence and Curl – Simple Problems. Chapter 1 and 2	14
Unit IV	Integration of vectors Line integral – surface integral – Green's theorem in the plane – Gauss divergence theorem – Strokes theorem – Statements only – Simple Problems. Chapter 3:3.1-3.5, Chapter 4: 4.1,4.2,4.4,4.5	15
Unit V	Fourier Transforms Definition – finding Fourier coefficient for a given periodic function with period 2 π – odd and even functions, Change of Interval. Chapter 6:1,2,3	15

- 1. Manicavasagom Pillai .T.K . and Narayanan .S—"Trigonometry"—Viswanathan Publishers and PrintersPvt Ltd (Unit 1 and II)
- 2. Duraipandian .P , Laxmiduraipandian "Vector Analysis" (Revised Edition Reprint 2005) EmeraldPublishers. (Unit III and IV)
- 3. Manicavasagom Pillai.T.K. and Narayanan .S "Calculus Volume III". S.Viswanatham Printers, 2007. (Unit V)

Reference Book:

1. Kandasamy .P., Thilagavathi .K — "Mathematics for B.Sc. Branch I", Volume I, II and IV, S.Chand and Company Ltd, New Delhi, 2004.

Code No	Subject	Semester No
16MAU06	ALLIED: MATHEMATICAL STATISTICS-II	II
Objective:	To apply Statistics for Mathematical problems	
Unit No	Topics	Hours
Unit I	Sampling Statistical Population Census and Sampling Survey – Parameter and Statistics – Sampling and Sampling Distribution and Standard Error. Chapter:8	12
Unit II Unit III	Test of significance Large sample test for proportion, mean and standard deviation — Exact test based on 't', Chi — square and F distribution with respect to population mean, variance and correlation coefficient. Chapter14: SecNo:14.1;14.2—14.2.4;14.6;14.7—14.7.2;15.6— 15.6.2;16.1;16.2—16.2.1; 16.3—16.3.2; 16.6.1—16.6.3. Point estimation and Cramer-Rao inequality Point estimation—Concept of unbiasedness, consistency, efficiency and sufficiency—Cramer—Rao Inequality—Methods of Estimation—Maximum Likelihood Estimation—Method of Moments. Chapter17: Sec No:17.1;17.2.1-17.24;17.3-17.31;17.6-17.6.2.	12
Unit IV	Test of Hypothesis Null and Alternate Hypothesis – Type I and Type II error – Power of the test – Neymann Pearson lemma – Likelihood Ratio Test – Concept of Most Powerful test (Statement and Results only) – Simple Problems. Chapter 18: Sec No:18.2.1-18.2.7, 18.3, 18.4-18.4.2,18.5-18.5.1	12
Unit V	Analysis of Variance Analysis of Variance – One - way and Two-way Classification – Basic Principles of Design of Experiments – Randomization, Replication, Local Control, Completely Randomized Design. Chapter: 15 & 16	12

- 1. Gupta.S.C. & Kapoor.V.K. "Fundamentals of Mathematical Statistics", Sultan & sons publications.
- 2. Kailasam.C & Gangai selvi.R "Applied Statistics".

Reference Book:

1. Hogg R.V. & Craig.A.T. — "Introduction to Mathematical Statistics", Macmillan (1998).

Code No	Subject	Semester
1 () // A X 1 () //	CM A TOLOG	No
16MAU07	STATICS	III
Objective:	To gain knowledge about the system of forces	
Unit No	Topics	Hours
Unit I	Kinematics Mechanics, Units, Vector and Scalar quantities, A vector as a sum of three mutually perpendicular vectors, A vector as a sum of two non – perpendicular vectors. Forces Force, types of forces, magnitude and direction of the resultant of forces acting on a particle (in particular resultant of two forces acting on a particle), equilibrium examples. Equilibrium of a particle Equilibrium of a particle acted on a rough inclined plane, examples. Chapter 1: Section 1 – 5, Chapter 2 and Chapter6	10
Unit II	Forces on a rigid body Moment of a vector, General motion of rigid body, equivalent or equipotent systems of forces, resultant of parallel forces, couple, resultant of several coplanar forces. Chapter 7: Section 7.1 – 7.6	10
Unit III	Forces on a rigid body Moment of the resultant force, couples in a plane or in parallel planes, resultant of a couple and a force, three coplanar forces on a rigid body, equation of the line of action of the resultant, equilibrium of a rigid body under three coplanar forces examples. Chapter 7: Section 7.1 -7.12	10
Unit IV Chapter 7: Section 7.1 -7.12 A specific reduction of a System of forces Reduction of a system of forces to a force at a chosen point and a couple, central axis, problems involving frictional force, problems involving tilting of bodies, examples. Chapter 8		9
Unit V	Stability of Equilibrium and Hanging strings Equilibrium of a uniform homogeneous string, sag, suspension bridge, examples Chapter 10 and 11	9

1. Duraipandian.P and others—"Mechanics" S.Chand & Co., 1990.

Reference Book:

1. Venkataraman.M.K. - "Statics", Agasthiar Publications, Trichy, 1999.

Code No	Subject	Semester No
16MAU08	DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS	III
Objective:	To gain knowledge about differential equations and laplace transform	nc
Unit No	Topics	Hours
Unit I	Differential Equations Differential Equations of Non homogeneous equations- Bernoulli's equation. Differential Equations of the first order, but of the higher degree – Equations solvable for dy/dx – Equations solvable for y- Equations solvable for x Chapter 1:2.3-2.5, 5.1-5.4	10
Unit II	Differential Equations Linear differential equations with constant coefficients – special methods of finding portional integral. Linear equations with	
Unit III	Differential Equations Simultaneous equations of the first order and first degree – Methods for solving dx/P=dy/Q=dz/R simultaneous linear differential equations with constant coefficients. Chapter 3: 1,2,4,6	10
Unit IV	Partial Differential Equations Derivation of partial differential equations by elimination of arbitrary constants and arbitrary functions — Different integrals of partial differential equations — Lagrange's equations Chapter 4:1,2,3,4,6.	9
Unit V	Laplace Transforms Laplace transforms – Definition – Transform of f(t), – expat, Cos at, Sin at and t ⁿ when n is an integer. Chapter 5: 1,2,4	9

1. Manicavachagam Pillay.T.K., Narayanan.S — "Calculus Vol. III" S.Viswanathan Printers, 2007.

Reference Book:

1. Bali.N.P. - "Differential Equations", Laxmi Publication Ltd, New Delhi, 2004

Code No	Subject	Semester No
16MAU09	PROGRAMMING IN C	III
Objective:	To gain knowledge about the C programming language	
Unit No	Topics	Hours
Unit I	Introduction Importance of C Basic structure of C programme – Character set – Constants – Keywords and identifiers – Variables Data types – Declaration of variables – Assigning values to variables –Defining symbolic constants. Chapter 1:1.2,1.8, chapter2: 2.1-2.11.	5
Unit II	Operators and expressions Arithmetic operators – Relational operators – logical operators – assignment operators – increment and decrement operates – Conditional operators – Special operators – Arithmetic expressions – Evaluation of expressions – Precedence of arithmetic operators – Some computational problems –Type conversion in expressions – operator precedence and associating mathematical functions. Chapter 3: 3.1 - 3.15, Chapter 4:4.2-4.5.	5
Unit III	Branching & Looping Reading and Writing character — formatted input and output. Decision making with IF statement — Simple IF statement — The if ELSE statement — Nesting of IFELSE statement — The ELSE IF ladder. The Switch statement — The ? Operator — The GOTO statement. The WHILE statement — the DO statement the FOR statement —Jumps in loops. Chapter 5: 5.1-5.9, Chapter 6:6.2-6.5.	5
Unit IV	Arrays One, Two dimensional arrays – Declaration of one-dimensional arrays – Initialization of one-dimensional arrays – Initiating two dimensional arrays – Multidimensional arrays Chapter 7:7.1-7.7.	5
Unit V	Strings Declaring and initializing string variables — reading strings from terminal — Writing strings on the screen — Arithmetic operations on characters Chapter 8:8.1-8.5.	4

1. Balagurusamy.E — "Programming in ANSI C" Second Edition — Tata McGraw — Hill Publishing company limited, New Delhi.

Reference Book:

1. Byron Gottfried — "Programming with C (Schaum's outline series)" — Tata Mc Graw Hill publishing company — 1998.

Page 21 of 121

Code No	Subject	· Semester No ·
16MAU10	PRACTICAL I : PROGRAMMING IN C	III
Objective:	To gain knowledge about the C programming lang	guage

- 1. Write a C program to generate 'N' Fibonacci number.
- 2. Write a C program to print all possible roots for a given quadratic equation.
- **3.** Write a C program to calculate the statistical values of mean, median, mode, Standard Deviation and variance of the given data.
- 4. Write a C program to sort a set of numbers.
- 5. Write a C program to sort the given set of names.
- 6. Write a C program to find factorial value of a given number 'N' using recursive function call.
- 7. Write a C program to find the product of two given matrix.
- 8. Write a C program to prepare pay list for a given data.
- 9. Write a C program to find the number of palindromes in a given sentence.
- 10. Write a C program to search a required element in a list using binary search.
- 11. Write a C program that check whether a character entered by the user is a vowel or not.
- 12. Write a C program to find the factorial of a given number.

Dr. S. ANURADHA,
M.Sc.,M.B.A.,M.Phil.,PGDCA.,Ph.D.,
Professor & Head,
PG & Research Dept. of Mathematics,
Hindusthan College of Arts & Science,

Coimbatore - 641 028

Code no	Subject	Semester No
16MAU12	DYNAMICS	IV
Objective:	To gain the knowledge about field kinematics, projectile, simple harm and impact of a particle on a surface.	onic motion
Unit No	Topics	Hours
Unit I	Projectiles Path of a projectile – Greatest height – time of flight – range on an inclined plane through the point of projection – Maximum range. Chapter 1: Section 1.6 – 1.15, Chapter 3: Section 3.1 – 3.6.	10
Unit II	Central Orbits Radial and transverse components of velocity and acceleration — areal velocity. Differential equation of central orbit — Pedal equations. Chapter 5: Section 5.1 – 5.7	10
Unit III	Simple Harmonic Motion Amplitude, periodic time, phase – composition of two simple harmonic motions of the same period in a straight line and in two perpendicular lines Chapter 12: Section 12.1 – 12.9	10
Unit IV	Impact on a fixed surface Impulsive force – Impact on a smooth fixed plane –Direct and oblique impact of two smooth spheres. Chapter 13: Section 13.1 – 13.4, 13.6 – 13.11	9
Unit V	Kinetic energy Loss of Kinetic energy during direct and oblique impacts Chapter 14: Section 14.1 – 14.6, Chapter 15: Section 15.1 – 15.5	9

Text book:

1. Duraipandian.P and others - "Mechanics" by S. Chand & Co., 1990.

Reference Book:

1. Dharamapadam.A.V. — "Dynamics", S.Viswanathan Printers and Publishers Pvt., Ltd, Chennai, 1998.

Code no	Subject ·	Semester No
16MAU13	DISCRETE MATHEMATICS	IV
Objective:	To gain knowledge about the Formal languages Automata Theory, Boolean Algebra and Graph Theory.	Lattices &
Unit No	Topics	Hours
Unit I	Mathematical logic Connections well formed formulas, Tautology, Equivalence of formulas, Tautological implications, Duality law, Normal forms, Predicates, Variables, Quantifiers and bound Variables. Theory of inference for predicate calculus. Chapter 1: 1-2 Sections 1-2.7 to 1-2.11,1-5.1-1-5.2,1-5.4,1-6.4	10
Unit II	Normal Forms Disjunctive normal form — Conjunctive normal form — Principal disjunctive normal form — Principal conjunctive normal form — Ordering and uniqueness of normal form Chapter 1: 1-3 Sections1-3.1 to 1-3.5	10
Unit III	Relations and functions Composition of relations, Composition of functions Inverse functions, one-to- one, onto, one-to-one& onto, onto functions, Hashing functions, Permutation function, Growth of functions. Algebra structures: Semi groups, Free semi groups, Monodies', Groups, Cosets, Sets, Normal subgroups, Homomorphism. Chapter 2: 2 - 3 Sections 2-3.5,2-3.7,2-4.2,2-4.3,2-4.6	10
Unit IV	Formal languages and Automata Regular expressions, Types of grammar, Regular grammar and finite state automata, Context free and sensitive grammars Chapter 3: Sections 3- 3.1, 3-3.2,4-6.2	9
Unit V	Lattices and Boolean algebra Partial ordering, Poset, Lattices, Boolean algebra, Boolean functions, Theorems, Minimization of Boolean functions. Chapter 4: Sections 4-1.1,4-2,4-3,4-4.2	9

1. Tremblay.J.P. and Manohar.R.P. — "Discrete Mathematical Structures with applications to computer science", Mc.Graw Hill, 1975.(unit 1 to V)

Reference Book:

1. Sharma.J.K. - "Discrete maths".

Code no	Subject	Semester No
16MAU14	MATHEMATICAL SOFTWARES	IV
Objective:	To gain knowledge about basic features of Mathematica and Matla	b
Unit No	Topics	Hours
Unit I	Introduction Introduction – Basics of Matlab , Input – Output, File types – Platform dependence – General Commands Chapter1:Sections 1.6.1-1.6.6	5
Unit II	Interactive Computations Matrices and Vectors – Matrix and Array Operations – Creating and Using Inline functions – Using Built-in Functions and Online Help –Saving and loading data – Plotting simple graphs. Chapter3:Sections 3.1-3.2,3.5-3.8	5
Unit III	Introduction to Mathematica Running Mathematica – Numerical Calculations – Building up Calculations, Using Mathematical Systems. Chapter1:Section1.0-1.3	5
Unit IV	Algebraic calculations Algebraic Calculations — Symbolic Mathematics, Numerical Mathematics. Chapter1:Sections 1.4-1.6	5
Unit V	Graphics Functions and Programs – Lists – Graphics. Chapter1:Sections 1.7-1.9	4

1.Rudra Pratap — "Getting started with MATLAB" — Oxford university Press, 2003 (for Unit I and Unit II). 2.Stephen Wolfram — "The Mathematica Book", Fifth edition, Cambridge University Press, 2003 (for Unit III to Unit V).

Reference Book:

1. William John Palm - "Introduction to MATLAB 7 for engineers", McGraw -Hill professional, 2005.

Code no	· Subject	Semester No
16MAU15	PRACTICAL II : MATHEMATICAL SOFTWARES	IV
Objective:	To gain knowledge about basic features of Mathematica	and Matlab

MATHEMATICA PRACTICAL LAB LIST

- 1. Numerical Calculations
- 2. Mathematical Functions
- 3. Algebraic Calculations
- 4. Symbolic Mathematics
- 5. Symbolic Mathematics Solving Equations
- 6. Graphics Two dimensional plots.

MATLAB PRACTICAL LAB LIST

- 1 .Plotting a function.
- 2. Polar plot.
- 3. Addition of two matrices.
- 4. Finding the determinant of a matrix.
- 5. Finding Eigen values and Eigen vectors of a matrix.
- 6.Calculating mean, median, standard deviation, variance, maximum value, minimum

Value, range, skewness, and kurtosis.

Code no	Subject »	Semester No
16MAU17	REAL ANALYSIS-I	V
Objective:	To gain the knowledge about real and complex numbers, sets and metric	c space.
Unit No	Topics	Hours
Unit I	Real and Complex Number System The Real and Complex number systems – The field axioms – the order axioms – Geometrical representation of Real numbers – Intervals – Integers – Unique Factorization theorem for integers – Rational numbers – Irrational numbers – Upper bounds, Maximum elements, Least upper bound – The completeness axiom –some properties of the supermum – Rational numbers with finite decimal representation of real numbers – absolute values and the triangle inequality – the Cauchy – Schwarz inequality – plus and minus infinity and the extended real number system. Sec.1.1 to 1.20	14
Unit II	Some basic notations of a set theory Notations – ordered pairs – Cartesian product of two sets – Relations and functions – one-one functions and inverse – composite functions – sequences – similar(equinumerous) sets – finite and infinite sets – countable and uncountable sets – uncountability of the real number system – set algebra – countable collection of countable sets. Sec. 2.1 to 2.15	14
Unit III	Elements of point set topology Euclidean space R ⁿ – open balls and open sets in R ⁿ . The structure of open Sets in R ⁿ – closed sets and adherent points – Accumulation points – The Bolzano – Weierstrass theorem –the Cantor intersection theorem. Sec. 3.1 to 3.9	14
Unit IV	Covering Theorem Lindelof covering theorem – the Heine Borel covering theorem – Compactness in R ⁿ – Metric Spaces – point set topology in metric spaces – compact subsets of a metric space – Boundary of a set Sec. 3.10 to 3.16	15
Unit V	Limits and continuity Cauchy Sequences – Complete Metric Spaces, Limit of a function – Continuous Functions – Continuity of Composite functions. Continuous complex valued and vector valued functions. Sec. 4.1, 4.3, 4.4, 4.5, 4.8, 4.9, 4.10	15

1. Apostol.T.M. — "Mathematical Analysis", 2nd ed., Narosa Publishing Company, Chennai, 1990.

Sprin

References Book:

1. Goldberg.R.R. - "Methods of Real Analysis", N.Y,John Wiley,New York, 1976

Code no	Subject	Semester No
16MAU18	COMPLEX ANALYSIS-I	V
Objective:	To gain knowledge about the origin, properties and application of compand complex functions.	lex numbers
Unit No	Topics	Hours
Unit I	Complex numbers Complex number system, Complex number – Field of Complex numbers– Conjugation – Absolute value – Argument – Simple Mappings. i) w=z +α ii) w=az iii) w=1/z invariance of cross-ratio under bilinear transformation. Chap I: Sec.1.1to 1.3, 1.6to 1.9, Chap II, Sec. 2.1 to 2.2, 2.6 to 2.9, Chap VII Sec. 7.1	14
Unit II	Complex functions Limit of a function – continuity – differentiability – Analytical function defined in a region – necessary conditions for differentiability – sufficient conditions for differentiability – Cauchy-Riemann equation in polar coordinates – Definition of entire function. Chap IV Sec. 4.1 to 4.10	14
Unit III	Power Series Absolute convergence – circle of convergence – Analyticity of the sum of power series in the Circle of convergence (term term differentiation of a series) Elementary functions: Exponential, Logarithmic, Trigonometric and Hyperbolic functions. Chap VI Sec. 6.1 to 6.11	14
Unit IV	Conjugate Harmonic functions Definition and determination, Conformal Mapping, Isogonal mapping -Conformal mapping – Mapping z>f(z), where f is analytic, particularly the mappings. w= e ^z ; w = z 1/2; w=sin z; w = 1/2(z+1/z) Chap VI, Sec. 6.12 to 6.13, Chap VII Sec. 7.6 to 7.9	15
Unit V	Complex Integration Simply and multiply connected regions in the complex plane. Integration of f(z) from definition along a curve joining z1 and z2—Proof of Cauchy's Theorem (using Goursat's lemma for a simplyconnected region). Cauchy's integral formula for higher derivatives (statement only) — Morera's theorem. Chap VIII, Sec.8.1 to 8.9	15

TextBook

1. Duraipandian.P and Laxmi Duraipandian — "Complex Analysis", Emerald Publishers, Chennai —2

Reference Book:

1. Santhinarayan – "Theory of functions of Complex Variable", S. Chand and Company, Meerut. 1995.

Sypon

Page 28 of 121

Code no ·	Subject	Semester No
16MAU19	MODERN ALGEBRA-I	V
Objective:	To gain knowledge about the sets, groups and rings by proving theoren	is.
Unit No	Topics	Hours
Unit I	Basic operations Sets – mappings – Relations and binary operations – Groups: Abelian group, Symmetric group Definitions and Examples – Basic properties. Chapter I Sec.1.1 to 1.3 Chapter II Sec.2.1 to 2.3	14
Unit II	Groups Subgroups – Cyclic subgroup – Index of a group – Order of an element – Fermat theorem – Normal Subgroups and Quotient Groups Chapter II Sec.2.4 to 2.6	14
Unit III	More about Groups Homomorphisms – Cauchy's theorem for Abelian groups – Sylow's theorem for Abelian groups – Cayley's theorem, permutation groups Chapter II: Sec, 2.7 to 2.10	14
Unit IV	Rings Definition and Examples –Some Special Classes of Rings – Commutative ring – Field – Integral domain – Homomorphisms of Rings. Chapter III:Sec. 3.1 to 3.3	15
Unit V	Ideals Ideals and Quotient Rings – More Ideals and Quotient Rings – Maximal ideal – The field of Quotients of an Integral Domain Chapter III: Sec. 3.4 to 3.6	-15

Textbook:

1. Herstein.1.N. — "Topics in Algebra", John Wiley York, 2003.

: Reference Book:

1. Surjeet Singh and Qazi Zameeruddin—"Modern Algebra", Vikas Publishing house, 1992.

Code no	Subject	Semester No
16MAU20	· OPERATIONS RESEARCH-I	V
Objective:	To gain knowledge about optimal use of resources.	
Unit No	Topics	Hours
Unit I	Basics Of Operations Research Origin and Development of O.R. – Nature and Characteristics of features O.R. – Models in O.R. – General solution methods for O.R models – Methodology of Operations Research – Scientific method in O.R. – Operation research and decision making – Applications of O.R. – Uses and limitations of O.R. – Mathematical Formulation of Problem – Graphical Solution method – Some exceptional cases. Sec. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.2, 2.3, 2.4	14
Unit II	Methods to Solve LPP Introduction — Fundamental properties of solution — The computational procedure — Simplex method — Artificial Variable techniques — Big-M method and Two phase method Sec. 3.1, 3.2, 3.3, 3.5	14
Unit III	Duality and Linear programming Concepts of duality – Formulation of primal dual Pairs – Duality theorems – Complementary Slackness Theorem – Duality and Simplex method – Dual Simplex method – Dual simplex algorithm Sec. 4.1,4.2, 4.3, 4.4, 4.5, 4.6, 4.7	14
Unit IV	The Transportation Problem Introduction – Mathematical formulation of the problem –Finding Initial Basic Feasible solution – Moving towards optimality – Transportation Algorithm – Unbalanced transportation problems Sec. 6.1, 6.2, 6.5, 6.6, 6.8, 6.9	15
Unit V	The Assignment problems Introduction – Mathematical formulation of an A.P. – Assignment algorithm Sec. 7.1, 7.2, 7.3	15

Textbook:

1. Kalavath.S—"Operations Research", Vikas publishing house pvt Ltd.Noida.

Reference book:

1. Kantiswarup, Gupta.P.K., Man Mohan — "Operations Research", S. Chand & Sons Education Publications, New Delhi, 12th Revised edition.

Code no	Subject	Semester No
16MAU21	ELECTIVE I : a) NUMERICAL METHODS-I	V
Objective:	To gain the knowledge about solving the linear equations numerically ar interpolation by using difference formulae	nd finding
Unit No	Topics	Hours
Unit I	The solution of numerical Algebraic and Transcendental Equations Bisection method – Iteration Method – Convergence condition – Regula Falsi Method – Newton – Raphson method – Geometrical meaning of Newton's method – Convergence Criteria – Order of Convergence. Chapter 3:3.1-3.4.	14
Unit II	Solution of simultaneous linear Algebraic Equations Gauss Elimination method – Gauss Jordan method – Method of Triangularization – Gauss Jacobi method – Gauss Seidel method Chapter 4:4.1-4.4,4.8,4.9.	14
Unit III	Finite Differences Differences – operators – forward and backward difference tables – Differences of a polynomial – Factorial polynomial – Error propagation in difference table – Finite integration Chapter 5:5.1-5.6.	14
Unit IV	Interpolation (for equal intervals) Gregory-Newton's forward and backward formulae – equidistant terms with one or more missing values – Central differences and central difference table – Gauss forward and backward formulae – Stirlings formula- advantages of central difference interpolation. Chapter 6:6.1-6.3, Chapter 7:7.1-7.5.	15
Unit V	Interpolation (for unequal intervals) Divided differences — Properties — Relations between divided differences and forward differences — Newton's divided differences formula — Lagrange's formula and inverse interpolation. Chapter 8:8.1-8.7.	15

Textbook:

1. Kandasamy. P, Thilagavathi. K and Gunavathi. K—"Numerical methods", S. Chand and Company Ltd. New Delhi—Revised Edition 2007. (Chapters: 3,4,5,6,7 and 8).

Reference book:

1. Venkataraman M. K. – "Numerical Methods in Science and Engineering", National publishing co. 5thedition, 1999.

Code no	Subject	Semester No
16MAU21	ELECTIVE I : b) ASTRONOMY-I	V
Objective:	To enable the students to understand the Astronomical aspects and laws governing the planet movements.	about the
Unit No	Topics	Hours
Unit I	Solar System General description of the Solar system. Comets and meteorites – spherical trigonometry.	14
Unit II	Coordinate System Celestial sphere – Celestial co-ordinates – Diurnal motion – Variation in length of the day.	14
Unit III	Geocentric Parallex Dip – Twilight – Geocentric Parallex	14
Unit IV	Tangent and Cassinis formula Refraction – Tangent formula – Cassinis formula	15
Unit V	Kepler's Law Kepler's laws - Relation between true eccentric and mean anamolies.	15

1. Kumaravelu.S and Susheela Kumaravelu — "Astronomy".

Reference Book:

1. John Duncan—"Astronomy" Paragon Publishers.

Code no	Subject	Semester No
16MAU22	REAL ANALYSIS-II	VI
Objective:	To gain the knowledge about the nature of functions mappings.	
Unit No	Topics	Hours
Unit I	Continuous Functions Examples of continuous functions – continuity and inverse images of open or closed sets – functions continuous on compact sets – Topological mappings – Bolzano's theorem. Sec. 4.11, 4.12, 4.13 to 4.15	12
Unit II	Connectedness Components of a metric space – Uniform continuity: Uniform continuity and compact sets – fixed point theorem for contractions – monotonic functions. Sec. 4.17, 4.19, 4.20 to 4.21, 4.23	12
Unit III	Definition of derivative – Derivative and continuity – Algebra of derivatives – the chain rule – one sided derivatives and infinite derivatives – functions with non-zero derivatives – zero derivatives and local extrema – Roll's theorem – The mean value theorem, for derivatives. Sec. 5.2 to 5.10	12
Unit IV	Monotonic Functions Properties of monotonic functions – functions of bounded variation – total Variation – additive properties of total variation on (a, x) as a function of x – Functions of bounded variation expressed as the difference of increasing functions. Sec. 6.2 to 6.5, 6.7	12
Unit V	Riemann Integral The Riemann – Stieltjes integral: Introduction – Notation – The definition of Riemann – Stieltjes integral – change of variable in a Riemann – stieltjes integral –Reduction to a Riemann integral. Sec.7.3, 7.6, 7.7	12

1. Tom. M. Apostol—" Mathematical Analysis", 2nd ed., Addison-Wisely. Narosa Publishing Company, Chennai, 1990.

Reference book:

1. Goldberg.R.R. — "Methods of Real Analysis", NY, John Wiley, New York 1976.

Code no	Subject	Semester No
16MAU23	COMPLEX ANALYSIS-II	VI
Objective:	To gain knowledge about the complex functions and its nature.	
Unit No	Topics	Hours
Unit I	Results based on Cauchy's theorem(I) Zeros-Cauchy's Inequality – Liouville's theorem – Fundamental theorem of algebra –Maximum modulus theorem –Gauss mean value theorem . Chap VIII: Sec. 8.10, 8.11	12
Unit II	Taylor's series Results based on Cauchy's theorem (II) –Taylor's series –Laurent's series. Chap IX: Sec. 9.1 to 9.3, 9.13	12
Unit III	Singularities and Residues Isolated singularities (Removable Singularity, pole and essential singularity) –Residues –Residue theorem Chap IX: Sec. 9.5 to 9.12, 9.13, Chap X. Sec. 10.1 to 10.2, 10.4	12
Unit IV	Real definite integrals Evaluation using the calculus of residues – Integration on the unit circle –Integral with - ∞ and + ∞ as lower and upper limits with the following integrals: i) $P(x)/Q(x)$ where the degree of $Q(x)$ exceeds that of $P(x)$ at least 2. ii) $(\sin ax).f(x)$, $(\cos ax).f(x)$, where $a>0$ and $f(z)\to 0$ as $z\to\infty$ and $f(z)$ does not have a pole on the real axis. iii) $f(x)$ where $f(z)$ has a finite number of poles on the real axis. Chap X: Sec. 10.3 to 10.4	12
Unit V	Meromorphic functions Theorem on number of zeros minus number of poles —Principle of argument: Rouche's theorem — Theorem that a function which is meromorphic in the extended plane is a rational function. Chap XI:Sec. 11.1 to 11.3 (Omit 11.5 and 11.6 theorems)	12

1. Duraipandian.P and Laxmi Duraipandian—"Complex analysis", Emerald Publishers, Chennai—2, 1997.

Reference Book:

1. Churchill and Others — "Complex Variable and Applications", Tata Mc Graw Hill Publishing Company Ltd, 1974.

Code no	Subject	Semester No
16MAU24	MODERN ALGEBRA-II	VI
Objective:	To gain the knowledge about the elementary operations on matrices, ovector of a square matrix, vector spaces and linear transformations.	characteristic
Unit No	Topics	Hours
Unit I	Matrices Introduction – Addition and Scalar Multiplication of Matrices – Product of Matrices –Transpose of a Matrix – Matrix Inverse – Symmetric and Skew - Symmetric Matrices. Chap I Sec.1.1 to 1,3, 1.5 to 1.7	12
Unit II	Rank of a Matrix Hermitian and Skew- Hermitian Matrices — Orthogonal and Unitary Matrices — Rank of a Matrix — Characteristic Roots and Characteristic Vectors of a Square Matrix. Chap I, Sec. 1.8 to 1.9, Chap II, Sec. 2.9, Chap III. 3.9	12
Unit III	Vector space Elementary Basic Concepts – Subspace of a Vector space – Homomorphism – Isomorphism - Linear span – Linear Independence and Bases. Chap IV Sec.4.1 to 4.2,	12
Unit IV	Dual Spaces Inner Product Spaces – Norm of a Vector – Orthogonal Vectors – Orthogonal Complement of a subspace – Ortho normal set. Chap IV, Sec. 4.3 to 4.4	12
Unit V	Linear Transformations Algebra of Linear Transformations – Regular, Singular Transformations – Range of T – Rank of T – Characteristic Roots – Characteristic Vectors. Chap VI, Sec.6.1 to 6.2 and 6.3	12

1. Balakrishnan.R and Ramabadran.M — "Modern Algebra", Vikas Publishing House Pvt. Ltd, New Delhi, (Second Revised Edition 1994) (For Units I & II)

Reference Book:

1. Surjeet Singh and Qazi Zameeruddin — "Modern Algebra", Vikus Publishing house, 1992.

Dr. S. ANURADHA,
M.Sc.,M.B.A.,M.Phil.,PGDCA.,Ph.D.,
Professor & Head,
PG & Research Dept. of Mathematics,
Hindusthan College of Arts & Science,
Coimbatore - 641 028

Elgenin

Code no	Subject	Semester No
16MAU25	OPERATIONS RESEARCH -II	VI
Objective:	To enhance knowledge in game theory, performance measures of queues, optin use of Inventory and Network scheduling with application.	
Unit No	Topics	Hours
Unit I	Game Theory Introduction – Two – Person Zero-sum games – The Maximin – Minimax principle – Games without Saddle points – Mixedstrategies – Solution of 2 x 2 rectangular games – Graphical method- Dominance property. Sec. 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7	12
Unit II	Queueing Theory Introduction – Queueing system – Characteristics of Queueing system – Symbols and Notations – Poisson Process and Exponential Distribution – Classification of Queues – Definition of Transient and Steady States – Poisson Queues – Simple Problems. Sec. 17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8	12
Unit III	Inventory Analysis Introduction – Reasons for Carrying Inventory- Types of Inventory – The Inventory Decisions – Economic Order Quantity – Deterministic Inventory Problem – EOQ Problem with Price – Breaks. Sec. 18.1, 18.2, 18.3, 18.4, 18.5, 18.6, 18.7	12
Unit IV	Replacement Problem Introduction – Replacement of Equipment or Asset the Deteriorates – Replacement of Equipment that Fails Suddenly. Sec. 19.1, 19.2, 19.3	12
Unit V	Network Scheduling By PERT/CPM Introduction — Network Based Components — Rules of Network Connection — Time Calculations in Networks — Critical Path Method(CPM) — PERT — PERT Calculations. Sec.21.1, 21.2, 21.3, 21.4, 21.5, 21.6, 21.7	12

1. Prem Kumar Gupta, Hira. D. S. — "Operations Research", S.Chand & Company Ltd, Ram Nagar, New Delhi

Reference Book:

1. Kantiswarup, Gupta. P. K., Man Mohan—"Operations research", S.Chand & Sons Education Publications, New Delhi, 12th Revised edition.

Code no	Subject	Semester No
16MAU26	FUZZY SETS AND FUZZY LOGIC	VI
Objective:	To know of the fundamentals fuzzy Algebra, fuzzy theory, fuzzy tec	hnology.
Unit No	Topics	Hours
Unit I	Introduction to fuzzy sets Introduction — Fuzzy subsets — Lattices and Boolean Algebras — L-fuzzy sets — operations on fuzzy — level sets — properties of fuzzy subsets of a set Part 2: Sections 6.1-6.2	12
Unit II	Operation on fuzzy sets Algebraic product and sum of two fuzzy subsets-propertiessatisfied by Addition and product – Cartesian product of fuzzy subsets. Part 2: Sections 6.3-6.4	12
Unit III	Relations on fuzzy sets Introduction — Algebra of fuzzy relations — logic — connectives. Part 2: Sections 6.5,7.1-7.3	12
Unit IV	Fuzzy relations: Crisp and fuzzy relations – Binary fuzzy relations – Binary relations on a single set – Fuzzy equivalence relations–Fuzzy compatibility relations – Fuzzy ordering relations–Fuzzy morphism – Sup-i compositions of binary fuzzy relations – Inf- ωi compositions of fuzzy relations. Chapter 5: Sections 5.1 – 5.10	12
Unit V	Applications: Natural, life and Social Sciences – Engineering – Medicine – Management and decision making Chapter 6: Sections 6.2 - 6.5	12

- 1. Rajasekaran.S, Vijayalakshmi Pai.G.A. "Neural Networks, Fuzzy Logic and Genetic Algorithms Synthethesis and Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 2003 for Unit I to Unit III
- 2. George J.Klir and Bo Yuan "Fuzzy Sets and Fuzzy Logic", Prentice Hall of India, For Unit IV
- 3. George J. Klir and Tina A. Folger "Fuzzy Sets, Uncertainty and Information", Prentice-Hall of IndiaPrivate Limited-Fourth printing-June 1995 For Unit V

Reference Book:

1. Timothy J. Ross - "Fuzzy Logic with Engineering Applications", McGrow Hill, 1997.

Code no	Subject	Semester No
16MAU27	ELECTIVE II : a) NUMERICAL METHODS-II	VI
Objective:	To gain the knowledge about solving the linear equations numerically a interpolation by using difference formulae.	nd finding
Unit No	Topics	Hours
Unit I	Numerical differentiations Newton's forward and backward formulae to compute the derivatives – Derivative using Stirlings formulae – to find maxima and minima of the function given the tabular values. Chapter 9: Section 9.1 – 9.6	12
Unit II	Numerical Integration Newton - Cote's formula - Trapezoidal rule - Simpson's 1/3rd and 3/8th rules, Weddle's rule. Chapter 9: Section 9.7 - 9.9,9.13 - 9.15	12
Unit III	Difference Equation Order and degree of a difference equation — Linear difference equation — solving homogeneous and non-homogeneous linear difference equations. Chapter 10: Section 10.1 — 10.7	12
Unit IV	Numerical solution of O.D.E Point wise method — Taylor series method — Euler's method — improved and modified Euler method — Runge Kutta method(fourth order Runge Kutta method only) Chapter 11: Section 11.4,11.5,11.9 — 11.13	12
Unit V	Numerical solution of O.D.E(for first order only) Milne's predictor corrector formulae — Adam-Bashforth predictor corrector formulae — solution of ordinary differential equations by finite difference method (for second order O.D.E). Chapter 11: Section 11.16 — 11.18	12

Kandasamy. P, Thilagavathi. K and Gunavathi. K — "Numerical methods", S. Chand and Company Ltd, New Delhi — Revised Edition 2007. (Chapters: 9,10,11, Appendix and Appendix E).

Reference Book:

1. Venkataraman M. K., —"Numerical Methods in Science and Engineering", National Publishing company V Edition 1999.

Code no	Subject	Semester No
16MAU27	ELECTIVE II : b) ASTRONOMY - II	VI
Objective:	To impart knowledge about the interesting facts of Moon, Sun, Planetary motion.	
Unit No	Topics	Hours
Unit I	Time Equation of time – Conversion of time – Seasons – Calendar	12
Unit II	Annual Parallax Annual Parallax – Aberration	12
Unit III	Comparative study of Planets Precession – Mutation	12
Unit IV	Moon Phases The Moon – Eclipses	12
Unit V	Astronomical phenomena Planetary Phenomenon – The Stellar system.	12

1. Mr.Kumaravelu and Susheela Kumaravelu — "Astronomy".

again

Dr. S. ANURADHA,
M.Sc.,M.B.A.,M.Phil.,PGDCA.,Ph.D.,
Professor & Head,
PG & Research Dept. of Mathematics,
Hindusthan College of Arts & Science,
Coimbatore - 641 028

Reference Book:

1. John Duncan — "Astronomy", Paragon Publishers.

Page 39 of 121