HINDUSTHAN COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE – 641 028 M.Sc., BIOTECHNOLOGY

SCHEME OF EXAMINATIONS – CBCS PATTERN

(For the students admitted from the Academic year 2016-2017 and onwards)

		E K	Z	M	MAX. MARKS		
CODE NO.	LECTURE HRS/ WEEK	EXAM DURATION (HRS)	IE	EE	TOTAL	CREDIT POINTS	
First Semes	ster						
16BTP01	Cell and Molecular Biology	5	3	25	75	100	5
16BTP02	Microbiology	5	3	25	75	100	5
16BTP03	Biochemistry	5	3	25	75	100	5
16BTP09	Practical I - Lab in Microbiology, Biochemistry and Bioprocess Technology	5	-	-	-	-	-
16BTP10	Practical II - Lab in Cell and Molecular Biology and Genetic Engineering	5	-	-	-	-	-
16BTP04	Elective I a) Plant and Animal System Physiology (OR) b) Occupational Health and Industrial Safety	5	3	25	75	100	4
Second Sen	nester						
16BTP05	Genetic Engineering	5	3	25	75	100	5
16BTP06	Research Methodology and Biostatistics	5	3	25	75	100	5
16BTP07	Bioprocess Technology	5	3	25	75	100	5
16BTP09	Practical I - Lab in Microbiology, Biochemistry and Bioprocess Technology	4	6	40	60	100	5
16BTP10	Practical II - Lab in Cell and Molecular Biology and Genetic Engineering	4	6	40	60	100	5
16BTP08	Elective II a) Genomics and Proteomics (OR) b) Bioethics, Biosafety and IPR	5	3	25	75	100	4
16GSP01	Skill Based - Cyber Security	2	-	100	-	100	2

Third Sem	ester						
16BTP11	Immunology and Animal Biotechnology	4	3	25	75	100	4
16BTP12	Pharmaceutical Biotechnology	4	3	25	75	100	4
16BTP13	Plant Biotechnology	4	3	25	75	100	4
16BTP14	Environmental Biotechnology	4	3	25	75	100	4
16BTP18	Practical III - Lab in Immunology,	5	-	-	-	-	-
	Pharmaceutical and Animal Biotechnology						
16BTP19	Practical IV - Lab in Plant Biotechnology	5				_	_
	and Environmental Biotechnology		_		_	_	_
16BTP15	Elective III						
	a) Developmental Biology and						
	Behavioral Studies	4	3	25	75	100	4
	(OR)						
	b) Biotechniques						
16BTP16	Institutional Training	-	-	100	-	100	2
Fourth Sen	nester						
16BTP18	Practical III - Lab in Immunology,	5	6	40	60	100	5
	Pharmaceutical and Animal Biotechnology		Ü		00	100	
16BTP19	Practical IV - Lab in Plant Biotechnology	5	6	40	60	100	5
	and Environmental Biotechnology		Ü			100	·
16BTP17	Elective IV						
	a) Food Biotechnology	5	3	25	75	100	4
	(OR)		J				•
	b) Conservation Biology						
16BTP20	Project Work	1	-	50	150	200	4
							90

1. Breakup Marks for IE (Theory papers)

One Test - 5 Marks Model Exam - 10 Marks Assignments - 5 Marks Seminar - 5 Marks

Total - 25 Marks

Question Paper Pattern for IE Test I

(for 50 Marks) (2 hours)

3 x 6=18 Marks

<u>Section-A (18 Marks)</u> Answer ALL Questions

Either or Type

ALL questions carry EQUAL Marks

Section-B (32 Marks) 2 x 16=32 Marks

Answer any TWO Questions out of three questions.

ALL questions carry EQUAL Marks ------

Total 50 Marks

Question Paper Pattern for IE Model Exam (for 75 Marks) (3

hours)

Section-A (30 Marks) 5 x 6=30 Marks

Answer **ALL** Questions

One Question from each unit with Either or Type

ALL questions carry EQUAL Marks

Section-B (45 Marks) 3 x 15=45 Marks

Answer any **THREE** Questions out of five questions.

ALL questions carry EQUAL Marks

Total 75 Marks

2 a) Components for Practical I. E.

Components	Marks
Test –I	20
Test - II	20
Total	40

2 b) Components for Practical E. E.

Components	Marks
Completion of Experiments	50
Record	5
Viva	5
Total	60

3. Institutional/ Industrial Training, Mini and Major Project Work

*¹Evaluation of report and conduct of viva voce will be done jointly by Internal and External Examiners

Institutional / Industrial Training		Mini Project	<u>Project Work</u>		
Components	Marks		Components		Marks
I.E Work Diary Report Viva –voce Examination Total	25 50 25 100	50 50 100	a) Attendance Marks 20 b) Review Marks 30		50
			E.E*1 a) Final Report Marks b) Viva-voce Marks	120 30 Total	150 200

4. Components for Cyber Security Paper

Components	Marks
Two Tests (2 x 40)	80
Two assignments (2 x 10)	20
Total	100 =====

The question paper pattern is as follows:		
a) Test $I - 2$ hours [4 out of 7 essay type questions]	4 x	
10 = 40Marks	4	
b) Test II – 2 hours [4 out of 7 essay type questions] $10 = 40$ Marks	4 x	
	Total	
= 80	Marks	
		
 The passing minimum for Cyber Security is 50 In case the candidate fails to secure 50 marks v the passing minimum, he/she may have to reappet the same in the subsequent semesters. 	vhich is	
5. Question Paper Pattern for EE Theory hours) Section-A (30 Marks)		(for 75 Marks) (3 5 x 6=30 Marks
Answer ALL Questions		
One Question from each unit with Either or Type		
ALL questions carry EQUAL Marks		
Section-B (45 Marks)		3 x15=45 Marks
Answer any THREE Questions out of five questions.		
ALL questions carry EQUAL Marks		
Total		75 Marks

Code No.	Subject Sen	iester No.
16BTP01	CELL AND MOLECULAR BIOLOGY	I
Objective:	To impart knowledge on various aspects of Cell and Molecular Biology which Su Students to have Solid Foundation in Basic Understanding.	upports
Unit No.	Topics	Hours
Unit I	Introduction to Different Types of Cells Types of Cells - Prokaryotic and Eukaryotic Cell Structure and Intracellular Organelles - Nucleus, Mitochondria, Chloroplast, Ribosomes, Peroxysomes and Microbodies; Fractionation and Purification of Subcellular Organelles; Molecular Events of Mitosis and Meiosis.	12
Unit II	Cellular Inclusions and Functions Cytoskeleton Cell Motility and Cellular Movements – Microtubules – Microfilament. Protein Localization – Protein Targeting to Various Organelles and Secretion of Proteins by Exocytosis – Receptor Mediated Endocytosis.	12
Unit III	Central Dogma of Cell DNA Replication, RNA Transcription and Processing, Interaction of mRNA, rRNA and tRNA on Protein Synthesis. Mitochondrial Electron Transport System – Oxidative Reactions in Microbodies – Pathways of Photosynthesis – Light and Dark Reactions.	12
Unit IV	Cell Signaling Structure and Functions of Plasma Membrane - Cell Recognition, Cell to Cell Signaling, Surface Receptor and Receptor - Response Mechanisms, Cell Adhesion. Cancer - Characteristics and Causes, Oncogenes and Tumour Suppressor Genes.	12
Unit V	Gene Expression and Development Homeotic Genes in Development - Developmental Pattern of Drosophila and Arabidopsis. Spatial and Temporal Regulation of Gene Expression, Specialized Cell Structure and Function (Muscle Cell, Nerve Cell and Motile Cell).	12

1. Darnell Lodish, "Molecular Cell Biology", Baltimore Scientific Books, USA.

Reference Books:

- 1. Alberts Bruce, "Molecular Biology of Cell", Garland Science, New York.
 2. Cooper G.M, "The Cell: A Molecular Approach", ASM Press, Ohio.

Code No.		ster No.
16BTP02	MICROBIOLOGY	I
Objective:	To provide knowledge on the Fundamentals of Microbiology and to help the stunderstand the different fields of Microbiology.	idents to
Unit No.	Topics	Hours
Unit I	Introduction and Techniques History - Ultra structure of Bacterial Cell – Growth Curve and Growth Kinetics - Physical Factors Influencing Growth - Temperature, pH, Osmotic Pressure, Salt Concentration. Microbial Diversity – Classification of Bacteria, Virus and Fungi. Structure and Working Principle of Bright Field, Dark Field, Phase Contrast and Electron Microscopy. Staining Techniques, Pure culture, Sterilization and Preservation Techniques – Principle and Applications.	12
Unit II	Food Microbiology Normal Microflora in Milk, Meat, Poultry, Eggs, Fruits and Vegetables. Fresh Food - Canned Food and Stored Grains. Milk Quality Tests - Preservation of Food – High Temperature (Boiling, Pasteurization, Appertization) - Low Temperature (Freezing) – Dehydration - Osmotic Pressure. Chemical Preservations, Radiation. Microbiologically Fermented Food: Curd – Cheese – Idli – Yogurt - Acidophilic Milk - Probiotics. Microorganisms as Food – SCP (Spirulina and Edible Mushrooms). Food Borne Diseases: Botulism – Salmonellosis – Shigellosis.	12
Unit III	Industrial Microbiology Primary and Secondary Screening of Industrially Important Strains - Strain Improvement through Random Mutation (Random & Rational Selection) - Genetic Recombination and Genetic Engineering - Preservation. Microbial Production of Organic Acids - Citric Acid; Antibiotics – Penicillin and Streptomycin; Enzymes - Amylase and Lipase; Vitamin - B12; Alcoholic beverage - Beer; Production of Native and Recombinant Proteins in Bacteria and Yeast - Vaccine Production in Microbes.	12
Unit IV	Agricultural Microbiology Brief account of Microbial Interactions with Plant and Soil; Biological Nitrogen Fixation - Symbiotic and Asymbiotic – Mycorrhizae – Rhizosphere. Biofertilizers: Azotobacter - Azospirillum and BGA. Biological Pest Control, Beneficial Application of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Plant Disease (Brown Spot of Rice, Black Stem Rust of Wheat) - Dissemination and Control.	12
Unit V	Environmental Microbiology Role of Microbes in Biogeochemical Cycle: Carbon – Nitrogen – Phosphorus and Sulphur Cycles. Microbial Applications in Bioremediation and Biodegradation of Xenobiotics - Biofuel Production and Biomining, Waste Water Treatment – Layout - Physical; Chemical and Biological Methods.	12

1. Presscott L.M, Harley J.P and Klein D.A, "Microbiology", Tata Mc Graw Hill, New Delhi.

Reference Books:

1. Frazier W.C and West Hoff D.C, "Food Microbiology", Tata McGraw Hill Ltd, New Delhi.

2. Stanbury P.F., Whittaker A and Hall S.J. "Principles of Fermentation Technology", Butterworth-Heinmenn Publishers, New York.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject	Sem	ester No.
16BTP03	BIOCHEMISTRY		I
Objective:	To develop understanding and provide scientific basics of the life processes a		
	level and to explain the structure, function and inter-relationships of biomole	ecules	
Unit No.	Topics		Hours
Unit I	Atoms, Molecules and Chemical Bonds Classes of Organic Compounds and Functional Groups. Covalent and Notes of Organic Compounds and Functional Groups. Covalent and Notes of Covalent Interactions - Vander Waal's – Electrostatic – Hydrogen Bonding Hydrophobic Interactions; Respiration and Photosynthesis. Energy Metabo (concept of free energy); Principles of Thermodynamics; Kinetics, Dissocial and Association Constants; Bioenergetics.	and lism	12
Unit II	Carbohydrates Structure and Classification of Mono, Di and Polysaccharides – Occurren Isolation – Purification – Properties and Biological Reactions. Structural Feat of Homoglycans, Heteroglycans and Complex Carbohydrates. Glycolysis TCA Cycle; Glycogen Breakdown and Synthesis; Gluconeogen Interconversion of Hexoses and Pentoses.	ures and	12
Unit III	Proteins and Lipids Proteins: Classification – Primary Structure of Proteins – Structural Compar at Secondary and Tertiary levels (Ramchandran Map) – Conformation of Protein Polypeptides (Secondary, Tertiary, Quaternary and Domain Structur Protein Folding - Biophysical and Cellular Aspects. Lipids: Structure Classification – Properties – Oxidation of Fatty acids – Biosynthesis of Facids – Triglycerides.	teins e) – and	12
Unit IV	Nucleic Acids Classification – Structure and Properties – Biological Significance of Do Strand – Sequence Dependent Variation in the Shape of DNA. Physical Prope of Double Stranded DNA, Types of RNAs and their Biological Significated DNA Bending – DNA Supercoiling, Secondary and Tertiary Structural Feat and their Analysis. Biosynthesis of Purines and Pyrimidines, Structure of Do Stranded DNA (B, A, C, D, T and Z DNA).	rties ince. iures	. 12
Unit V	Enzymes Classification – Regulation of Enzymatic Activity v Enzyme Catalysi Solution, Kinetics and Thermodynamic Analysis. Active Sites, Enzymes Coenzymes – Coenzymes Interactions, Activators and Inhibitors – Isoenzym Allosteric Enzymes – Ribozyme – Hammer Head – Hair Pin and other Ribozy – Abzyme: Structure and Drug Targets (Enzymes and Receptors).	and nes –	12

1. Albert L. Lehninger, David L. Nelson and Michael M. Cox, "Lehninger Principles of Biochemistry", W.H. Freeman Publication, New York.

Reference Books:

- 1. Donald Voet and Judith G. Voet, "Biochemistry", J. Wiley & Sons, Publications, New Jersey.
- 2. Robert K. Murray, Darryl K. Granner, Peter A. Mayes and Victor W. Rodwell, "Harper's Illustrated Biochemistry", Tata McGraw-Hill Publications, New Delhi.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject Ser	nester No.
16BTP04	PLANT AND ANIMAL SYSTEM PHYSIOLOGY	I
Objective:	To make the students understand Plant and Animal cells, its functions and also to	provide
	the basics of Plant and Animal Cell Physiology.	
Unit No.	Topics	Hours
Unit I	Plant Metabolism Photosynthesis - Electron Transport - CO ₂ fixation- C ₃ , C ₄ and CAM pathways - Respiration and Photorespiration – Solute Translocation through Xylem and Phloem. Plant Hormones: Biosynthesis – Storage - Breakdown and Transport - Physiological Effects and Mechanisms of Action. Structure, Function and Mechanisms of action of Phytochromes - Cryptochromes and Phototropins; Stomatal Movement - Photoperiodism and Biological Clocks.	12
Unit II	Secondary Metabolites and Stress physiology Biosynthesis of Terpenoids – Steroids – Alkaloids - Flavonoids and Phenolic Compounds and their roles. Responses of Plants to Biotic (Pathogen and Insects) and Abiotic (Water, Temperature and Salt) Stresses - Mechanisms of Resistance to Biotic Stress and Tolerance to Abiotic Stress.	12
Unit III	Muscular System: Classification – Structure and Function. Blood and Cardiovascular System: Blood Corpuscles - Blood Groups – Haemoglobin - haemostasis. Comparative Anatomy of Heart Structure, Myogenic Heart - Specialized Tissue - Cardiac Cycle - Heart as a Pump - Blood Pressure.	12
Unit IV	Respiratory System: Anatomy and Structure of Lungs - Transport of Gases - Exchange of Gases - Waste Elimination - Neural and Chemical Regulation of Respiration. Nervous System: Types - Neurons - Synapse. Sense organs: Vision - hearing and tactile response.	
Unit V	Excretory System: Anatomy and Structure of Urinary System – Micturition - regulation of electrolyte balance and acid-base balance. Endocrinology and Reproduction: Endocrine glands - basic mechanism of Hormone Action - Hormones and Diseases. Reproductive Processes - Neuroendocrine Regulation.	12

1. Frank B Salisbury and Cleon Wross, "Plant Physiology", CBS Publishers and Distributors, New Delhi.

Reference Books

1. Roy G. Noggle and George J. Friltz, "Introductory Plant physiology", Prentice-Hall of India Pvt.Ltd, New Delhi.

2. Neilson K.S, "Animal Physiology", Cambridge University Press, Pergamon Press, Oxford.

Code No.	Subject Sem	ester No.
16BTP04	OCCUPATIONAL HEALTH AND INDUSTRIAL SAFETY	
Objective:	The areas covered under this study helps to get knowledge on existing policies/dir Industrial Occupational Health and Safety Management. It also gives emprevention and control methods.	
Unit No.	Topics	Hours
Unit I	Parameters of safety Factors affecting the conditions of occupational and Industrial safety - Concept of safety organization and Management - Safety Regulations. Definition and Role of Ergonomics in Designing Work-Place.	12
Unit II	Work Environment Effects of Light – Ventilation – Vibration – Noise. The Work Physiology and their Relevance to Safety - Performance Evaluation of Man - Environment systems.	12
Unit III	Occupational Health and Safety Occupational Health and Hazards – Physical, Chemical and Biological hazards. Occupational Diseases, their Prevention and Control. Health Protection Measures for Workers. Principles of Arthropod Control.	12
Unit IV	Health Education Medical First-Aid and Management of Medical Emergencies Industrial Safety management Techniques Industrial Safety Standards. Accidents-Definition, Frequency Rate, Prevention and Control. Work Study - Method of Study and Measurement. Measurement of Skills. Safety - Cost of Expenses.	
Unit V	Case Study Principles of Functions in Safety Management - Case Study - Visit to an Industry - Preparation of report on safety measures followed in Airport/Industry.	12

Text Rook

1. Kolluru R.V., "Environmental Strategies-Hand Book", Mc Graw Hill Inc., New York.

Reference Books

1. Walsh W and Russell L, "A B C of Industrial Safety", Pitma Publishing, United Kingdom.

2. Hommadi A.H, "Environmental and Industrial Safety", I.B.B Publication, New Delhi.

Code No.	Subject Sem	ester No.
16BTP05	GENETIC ENGINEERING	II
Objective:	To impart knowledge on genetic manipulation techniques and its application in GMO's.	producing
Unit No.	Topics	Hours
Unit I	Gene and Genome Structure of Gene – Gene Structure in Prokaryotes – Operons, Gene Structure in Eukaryotes; Genome Organization - C - Value Paradox; Regulation of Gene Expression – Transcription and Translation in Prokaryotes and Eukaryotes.	
Unit II	Enzymes in Genetic Engineering Restriction Endonucleases; DNA Modifying Enzymes – Nucleases, Polymerases; Enzymes that Modify Ends of DNA – Alkaline Phosphatase – Polynucleotide Kinase – Terminal Transferase – DNA ligase.	
Unit III	Vectors Steps in Gene Cloning – Host Cell Types – Prokaryotic Hosts, Eukaryotic Hosts - Vectors - Plasmid Vectors – pBR322 – pUC vectors – Bacteriophage Vectors - Lambda and M13 vectors; Hybrid Vectors – Cosmids – Phagemids. Eukaryotic Vectors – Yeast Vectors – YAC and BAC. Plant Vectors – CaMV – TMV – Agrobacterium mediated Transfer; Animal Vectors – SV40 – Retrovirus – Adenovirus.	
Unit IV	Cloning Strategy Genomic Library Construction – cDNA Library Construction – Chromosome Walking and Jumping. Methods of Gene Transfer – Transformation – Transduction – Lipofection – Electroporation. Screening of Recombinants – Genetic Methods – Chromogenic Substrate – Nucleic acid Hybridization – Immunological Screening. Blotting Techniques - PCR – RAPD – RFLP – AFLP - CRISPR Tool – NGS.	12
Unit V	Applications of Genetic Engineering Gene Therapy – Germline Gene Therapy – Somatic Cell Line Gene Therapy – In vivo – Ex vivo – Anti-Sense Gene Therapy and Embryo Gene Therapy – Genetic Counseling.	12

1. Primrose S.B, "Molecular Biotechnology", Blackwell Scientific Publishers, Oxford.

Reference Books:

1. Mickloss D.A and Freyar G.A, "DNA Science: A First Course in Recombinant Technology", Cold Spring Harbor Laboratory Press, New York.

2. Walker M.R and Rapley R, "Route Maps in Gene Technology", Blackwell Science Ltd, Oxford.

Code No.	9	Seme	ester No.
16BTP06	RESEARCH METHODOLOGY AND BIOSTATISTICS		II
Objective:	To enable the students to understand the basic knowledge on thesis writing and pr solving in research.		blem
Unit No.	Topics		Hours
Unit I	Introduction to research methodology What is Research? Basic and Applied Research - Essential steps in Research - Defining the Research Problem - Research/Experimental Design. Literature Collection - Literature Citation. Research Report - Components - Format of Thesis and Dissertation - Manuscript/Research Article - Review Monographs - Bibliography. Significance of Research, Teaching Learning, Evaluation and Monitoring Process.		12
Unit II	Journals Standard of Research Journals - Impact Factor - Citation Index. Information Retrieval - Access to Archives and Databases - Science Direct - Sciverse - Pubmed - National Informatics Center Network Services - Online Data Base Library. Search Engines - Google.		12
Unit III	Biostatistics Definitions - Scope of Biostatistics - Classification and Tabulation of Data - Graphical and Diagrammatic Representation - Scale Diagrams - Histograms - Frequency Polygon - Frequency Curves. Measures of Central Tendency - Arithmetic Mean - Median and Mode. Calculation of Mean - Median - Mode in Series of Individual Observation Discrete Series - Continuous Open End Classes.		12
Unit IV	Measures of Dispersion Standard deviation and Range, Chi – Square Test, Student - t Test, Regression, Correlation, One Way and Two Way ANOVA. Experimentation Design: Completely Randomized Design – Factorial Design – Plackett - Burman Designs – Response Surface Designs: Central Composite Designs (adapted from Montgomery) and Box-Behnken design.		12
Unit V	Proportion Data and Analysis Examples of Proportion data - MPM-sterility testing of medicines - animal toxicity infection and immunization studies (e.g., LD ₅₀ , ED ₅₀ , PD ₅₀) – statistical treatment to proportion data. Introduction to Count data – Examples (bacterial cell count, radioactivity count, colony and plaque count, etc.). Statistical treatment to count data Poisson distribution - standard error -confidence limits of counts. Application of statistical software for biological research.		12

1. Duncary P, "Authoring a PhD, Thesis: How to Plan, Draft, Write and Finish a Doctoral Dissertation", Palgrave Macmillan, Australia.

Reference Books:

- 1. Snedecor G.W and Cochran W.G, "Statistical methods", Iowa State Press. USA.
- 2. Matthews, "Successful Scientific writing: A step-by-step Guide for Biomedical Scientists", Cambridge University Press.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject Ser	nester No.
16BTP07	BIOPROCESS TECHNOLOGY	II
Objective:	To impart knowledge on Design and Operation of Fermentation Processes with prerequisite and to endow the students with the basics of Microbial Kinetics, N Stoichiometry and Energetics.	
Unit No.	Topics	Hours
Unit I	Introduction to Bioprocess Engineering Fermentation — a Historical Perspective. Sources of Industrially Important Microbes for Fermented Products — Antibiotics — Vitamins — Enzymes — Organic Acids. Biotechnology and Bioprocess Engineering — Bioprocess Regulatory Constraints — Cell Construction. Substrate for Fermentation — Media Formulation — Cell Nutrients. Stoichiometry of Microbial Growth and Product Formation.	12
Unit II	Bioreactor - Designs Introduction to Fermentation Process - Types of Fermentation - Batch - Fed Batch - Continuous. Sterilization, Thermal Death Kinetics. Design of Continuous Sterilization Process, Fibrous Filters. Bioreactor Design, Parts and their Functions, Alternative Vessel Designs - CSTR - Tower - Airlift - Loop Jet - Bubble Column - Packed Bed. Immobilized Cells.	
Unit III	Kinetic Studies Microbiology of Industrial Fermentation – Fermentation Kinetics – Rheological properties of the Medium – Theory of Mixing. Oxygen Transfer Rate – Oxygen Transfer Coefficient and Correlation. Biological Heat Transfer and Heat Transfer Coefficient – Mass Transfer.	12
Unit IV	Control and Monitoring Different types of Instrumentation, Common Measurement and Control Systems - Additional Sensors - Feedback Control - pH - Temperature - Agitation - Aeration - O ₂ - Anti Foam - Baffles - Sparger and On/Off Valves - PID Control - Computers in Bioprocess Control Systems - Biosensors in Bioprocess Monitoring and Control.	12
Unit V	Downstream Processing Filtration – Removal of Microbial Cells – Cell Disruption: Enzymatic, Chemical and Physical Methods; Purification of Fermentation Products - Precipitation Methods, Membrane Process. Centrifugation – Ultracentrifugation: Chromatography - Ion Exchange and Gel Permeation Chromatography – HPLC. Crystallization – Drying – Lyophilisation - Packaging and Quality Assurance.	12

1. Michael L. Shuler and Fikret Karg, "Bioprocess Engineering Basic concepts", Prentice Hall International services, New Jersey.

Reference Books:

1. El-Mansi E.M.T and Bryce C.F.A, "Fermentation Microbiology and Biotechnology", Taylor & Francis, London. 2. Wulf Crueger and Anneliese Crueger, "Biotechnology-A Textbook of Industrial Microbiology", Panima Publishing

Corporation, New Delhi.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject	Semester No.
16BTP08	GENOMICS AND PROTEOMICS	II
Objective:	To enable the students to understand the concepts of gene, protein and it drug designing.	s applications in

Unit No.	Topics	Hours
Unit I	Genome Mapping, Assembly and Comparison Genome mapping - Genome sequencing - Genome sequence assembly: Base calling and assembly programs - Genome annotation: Gene ontology - Automated genome annotation - Annotation of hypothetical proteins and Genome economy. Comparative genomics: Whole genome alignment - Finding a minimal genome - Lateral gene transfer - Within-genome approach and Gene order comparison.	12
Unit II	Functional Genomics Sequence based approaches: EST - EST index construction and SAGE. Microarray based approaches: Oligonucleotide design - Data collection - Image processing - Data transformation and normalization - Statistical analysis to identify differentially expressed genes and Microarray data classification - Comparison of SAGE and DNA Microarrays.	12
Unit III	Proteomics Technology of protein expression analysis: 2D-PAGE - Mass spectrometry protein identification - protein identification through database searching - Differential in-gel electrophoresis and Protein Microarrays. Post translational modification: Prediction of disulphide bridges and Identification of posttranslational modifications in proteomics analysis - Protein sorting.	
Unit IV	Protein-protein interactions Experimental determination of protein-protein interaction - Prediction of protein-protein interactions: prediction interactions based on domain fusion - gene neighbors - sequence homology - phylogenetic information and prediction interactions using hybrid methods.	
Unit V	Applications of proteomics Medical proteomics - disease diagnosis: Biomarkers - Biomarker discovery using 2D GE and mass spectrometry - pattern profiling using protein chips. Pharmaceutical proteomics - drug development - The role of proteomics in target identification and target validation - Proteomics in the development of lead compounds and Proteomics in clinical development.	12

1. Xiong J, "Essential Bioinformatics", Cambridge University Press, UK.

Reference Books:

1. Goodman N, "Biological data becomes computer literature: New Advances in Bioinformatics", Curr. Opin. Biotechnol, India.

2. Hagen J.B, "The Origin of Bioinformatics", Nat. Rev. Genetics, USA.

Code No.	Subject Sem	ester No.	
16BTP08	BIOETHICS, BIOSAFETY AND IPR	II	
Objective:	To make the students understand the advantages and disadvantages of biotechnapplications, ethical implications and intellectual property rights.		
Unit No.	Topics	Hours	
Unit I	Bioethics Introduction to ethics/bioethics – framework for ethical decision making; biotechnology and ethics –benefits and risks of genetic engineering – ethical aspects of genetic testing – ethical aspects relating to use of genetic information – genetic engineering and Biowarfare.		
Unit II	Ethics on GMO's Ethical implications of cloning: Reproductive cloning - therapeutic cloning. Ethical, legal and socioeconomic aspects of gene therapy - germ line - somatic - embryonic and adult stem cell research. GM crops and GMO's - biotechnology and biopiracy - ELSI of human genome project.		
Unit III	Biosafety Introduction to biosafety – biosafety issues in biotechnology – risk assessment and risk Management. Safety protocols: risk groups – biosafety levels – biosafety guidelines and regulations (National and International) – operation of biosafety guidelines and regulations – types of biosafety containment.		
Unit IV	Intellectual Property Rights Introduction to intellectual property and intellectual property rights – types: patents, copy rights, Trade marks, design rights, geographical indications – importance of IPR - world intellectual Property organization (WIPO).	12	
Unit V	Patent What can and what cannot be patented? – Patenting life – legal protection of biotechnological Inventions – Patenting in India: Indian patent act.	12	

1. Jose Cibelli, Robert P. lanza, Keith H.S, Campbell, Michael D.West, "Principles of cloning", Academic Press, USA.

Reference Books:

- 1. http://books.cambridge.org/0521384737.html.
- 2. http://online.sfsu.edu/%7Erone/GEessays/gedanger.html.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject	Semester No.
16BTP09	PRACTICAL I - LAB IN MICROBIOLOGY, BIOCHEMISTRY AND BIOPROCESS TECHNOLOGY	1 & 11
Objective:	To enable the students to understand the basic techniques and Microbiology, Biochemistry and Bioprocess Technology.	l applications in
	Tonics	

Topics

Microbiology

- 1. Microscopy- Light, SEM, TEM, Fluorescent, Inverted Microscope.
- 2. Isolation of Microbes from Soil, Contaminated Food, Industrial Waste.
- 3. Staining of Bacteria: Simple, Grams, Endospore, Flagellar Staining.
- 4. Staining of Fungi Lacto Phenol Cotton Blue Method.
- 5. Isolation, purification and biochemical identification of Bacteria.
- 6. Antibiotic sensitivity test.
- 7. Maintenance and storage of Bacterial strains.
- 8. IMVIC Test.

Biochemistry

- 9. Estimation of Reducing Sugars by Nelson Somogyi method.
- 10. Estimation of Total Carbohydrates by Anthrone method.
- 11. Estimation of Acid Value, saponification value, Iodine number of fat.
- 12. Estimation of Total Free Amino Acids.
- 13. Protein Estimation by Lowry's Method and Bradford method.
- 14. Separation of LDH Isozymes from Serum by SDS-PAGE.
- 15. Paper Chromatography Separation of Pigments.
- 16. Thin Layer Chromatography Separation of Amino Acids.
- 17. Ion Exchange Chromatography.
- 18. Gel permeation Chromatography.
- 19. Estimation of Ascorbic Acid and Riboflavin.
- 20. Estimation of Calcium and Iron.

Bioprocess Technology

- 21. Fermentor Design and Working Principle.
- 22. Citric Acid Production.
- 23. Amylase Production.
- 24. Wine Production.
- 25. Antibiotic Production.

Reference Books:

- 1. Sadasivam S and Manickam A, "Biochemical Methods", Reprint New age international (P) Ltd, New Jersey.
- 2. Kanika Sharma, "Manual of Microbiology Tools and Techniques", Ane Books Kolkatta.
- 3. Stanbury P.F., Whittaker A and Hall S.J, "Principles of Fermentation Technology", Butterworth-Heinmenn Publishers, New York.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject	Semester No.
16BTP10	PRACTICAL II - LAB IN CELL AND MOLECULAR BIOLOGY AND GENETIC ENGINEERING	I & II
Objective:	To enable the students to understand the techniques involved i genetic material isolation and various methodology in Genetic	
	Topics	

Cell and Molecular Biology

- 1. Identification of Cell Types Plant, Animal and Microbes.
- 2. Fractionation of Cellular components Nucleus, Mitochondria, Chloroplast.
- 3. Mitotic Preparation Onion Root Tip.
- 4. Identification of Barr Bodies.
- 5. Mounting of Polytene Chromosome from Chironomous Larvae.
- 6. Cell Permeability.

Genetic Engineering

- 7. Isolation of Genomic DNA from Bacteria and Animal Tissue Purification and Quantification.
- 8. Agarose Gel Electrophoresis.
- 9. Isolation of Plasmid DNA from Bacteria.
- 10. Restriction Digestion and Ligation of Lambda phage DNA and Gel Analysis.
- 11. Transformation of Plasmid DNA in *E.coli*, Expression and Selection.
- 12. Polymerase Chain Reaction.
- 13. Southern Hybridization using Non-Radioactive Detection.
- 14. Northern Blotting.
- 15. RAPD.
- 16. Western Blotting.

Reference Books:

- 1. Sandhya Mitra, "Genetic Engineering Principles and Practice", Macmillan. India.
- 2. Joseph Sambrook, Fritsch E.F, Tom M and Chris N, "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory, New York.

Code No.		nester No.
16BTP11	IMMUNOLOGY AND ANIMAL BIOTECHNOLOGY	III
Objective:	To impart knowledge on structure, functions of Immune System and Animal Tis	sue
	Culture techniques involved in Animal Biotechnology.	
Unit No.	Topics	Hours
Unit I	Antigen and Antibody Antigens - Types. Antibodies: Structure and Types. Cells involved in Immune System – Primary and Secondary Lymphoid Organs - MHC Molecules - Antigen Presentation, B cell and T Cell Activation, Structure and Components of Cytokines and Complement Activation and Regulation.	
Unit II	Antigen – Antibody Reactions ABO Blood Grouping – Hybridoma Technology – Production of Monoclonal Antibodies - Auto Immunity – Transplantation - Hypersensitivity and its Types – Immune Tolerance – Recombinant Vaccines – Peptide and DNA Vaccines – Synthetic Vaccines – <i>in vitro</i> Tests: Precipitation – Immunoelectrophoresis – RIA and ELISA.	
Unit III	Animal Tissue Culture Tissue Culture Media – Sterilization Technique and Contamination: Sources – Types of Cell - Steps involved in Primary cell culture - Isolation of Tissue – Subculture and maintenance. Cell Line: Characterization – Morphology – Chromosome Analysis – DNA, RNA and Protein Content - Immortalization – Aberrant Growth Control – Cell counting – Plating Efficiency – Labeling Index – Generation Time of established cell line; Recent issues on research in cell lines.	
Unit IV	Cytotoxicity Measurement of Cytotoxicity: Viability – Survival and Variable Parameters – Cell Proliferation Assays – Metabolic Cytotoxicity Assays – Microtitration Assays – Microtitration and Clonogenic Survival – Drug Interaction; Mutagenesis Assay by Sister Chromatid Exchange – Applications of Cytotoxicity Assays. Apoptosis and its determination – Necrosis; Difference between Apoptosis and Necrosis.	
Unit V	Application of Animal Biotechnology Transgenic Animals: Production Methodology - Embryonic Stem Cell Method - Microinjection Method - Applications of Transgenic Animals - in Therapeutic Protein Production — Live Stock Improvement — Transgenic Animals as Disease Models — <i>in vitro</i> Fertilization and Embryo Transfer: Composition of IVF Media, Steps involved in IVF — Fertilization by means of Micro Insemination — PZD — ICSI — SUZI — MESA. Engineered Cell Culture as source of Valuable Products - Ethical issues in Animal Biotechnology.	

1. Das H.K, "Textbook of Biotechnology", John Wiley publication, New Jersey.

Reference Books:

1. Ivan Riot, "Essentials of Immunology", Blackwell Scientific Publications, Oxford.

2. Ed. Jennie P. Mather, "Methods in cell biology: Animal cell culture methods". David Barnes, Academic press, USA.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-,2016

Code No.	Subject	Semester	No.
16BTP12	PHARMACEUTICAL BIOTECHNOLOGY	III	
Objective:	To impart basic concepts of Drug Metabolism and Pharmacokinetics, Manuf Principles, Product Development and its Quality.		facturing
Unit No.	Topics		Hours
Unit I	Introduction to Pharmaceutical Biotechnology History of pharmaceutical industry - Drugs discovery - Pharmacopoeia - Development phases and Drug Manufacturing Process - Drugs and Cosmetics Act and Regulatory Aspects. Generics - Definition and its advantages - Biogenerics and Biosimilars. Sources of Drugs - Animal, Plant and Microbial Origin - Drug Metabolism - Physico-Chemical Principles - Pharmacokinetic Action of Drugs in Human Bodies.		10
Unit II	Guidelines Good Microbiological and Good Laboratory Practice (GMP and GLP) - Basic Principles of Quality Control (QC) and Quality Assurance (QA) - Guidelines for QA and QC. Raw Materials – Sterilization – Media - Stock Cultures - Role of Culture Collection Centre - Public Health Laboratories and Regulatory Agencies. Biosafety Guidelines - Risk and Risk Assessment - Biosafety Levels - Laboratory Biosecurity Concepts. Toxicity Testing - Estimation of toxicity: LD50 and ED50.		9
Unit III	Advanced Pharmaceutical Biotechnology Recombinant Therapeutic Proteins - Erythropoietin (EPO) - Colony stimulating Factors (CSFs) - Human Growth Hormone (hGH) - Insulin - Hepatitis B Vaccine - Factor VIII - Interferons (IFN) - Cytokines - DNA Vaccines - DNA Vaccine Construction and Immunology of DNA Vaccine - Delivery of DNA Vaccines. Peptide vaccine - Gene Pharming - Pharmacogenomics and biomarkers.		10
Unit IV	Stability and Validation Studies of Biotech derived products Basic Concept and Objectives - Effects of Various Environmental Stability of the Formulation - Techniques for Stabilization of Emphasis on Matrixing Bracketing Techniques - Climatic Z Process Validation: Concept - Cell Lines Culture Process V Characterization - Purification Process for Viral Clearance - Recovery - Cleaning - Filtration. Issues of DNA Vaccines and Vaccines.	Processing on Product with ones. Biotech Validation and Validation of	10
Unit V	Drug Designing and Business Biotechnology Introduction to Drug Designing and Search of Database - Informat for Genes and Proteins – Phylogenetics Methods - DNA Micro Patents (process patent and product patent) – Marketing Requirements.	oarrays. IPR -	9

1. Daan Crommelin and Robert D. Sindelar, "Pharmaceutical Biotechnology", Taylor and Francis Publications, London.

Reference Books:

- 1. Leon Lachman, Herbert A. Lieberman, Joseph L. Kanig, "The Theory and Practice of Industrial Pharmacy". Lea & Febiger, Philadelphia, USA.
- 2. Allen Loyd V, "Remington: The Science and Practice of Pharmacy", Pharmaceutical Press, Great Britain.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.		ester No.
16BTP13	PLANT BIOTECHNOLOGY	III
Objective:	On successful completion of the course, students will be aware of various <i>in vitre</i> techniques, Preservation of plant cells, Gene transferring mechanisms and Transge	
Unit No.	Topics	Hours
Unit I	Plant Tissue Culture Conventional Plant Breeding methods - Selection, Hybridization, Mutation. Tissues Culture Media - Composition and Preparation; Micropropagation- Callus Culture and Suspension Culture - Somaclonal Variation - Somatic Embryogenesis - Embryo Culture.	
Unit II	Plant Hybrid Production Protoplast isolation and Somatic Hybridization – Cybrids - Haploid Plants Artificial Seeds and Hardening. Molecular Marker Aided Breeding – RFLP - RAPD – AFLP – SCAR - CAPS and SRAPC - Marker Aided Selection. Arid and Semi Arid Technology - Green House Technology.	9
Unit III	Plant Transformation Technology Genome Organization – Mitochondria – Chloroplast - T- DNA. Gene Expression and Regulation. Ti and Ri plasmids - Binary and Co-Integrated Vector Systems - Viral Vectors and their Applications - 35S and other Promoters - Marker Genes - Reporter Genes. Gene Transfer Methods in Plants – Direct DNA Transfer methods - Agrobacterium Mediated. Nuclear Transformation - Chloroplast Transformation.	10
Unit IV	Plant Recombinant Technology Particle Bombardment – Electroporation – Selection of Clones. Application of Genetic Transformation techniques for Improving Productivity and Performance of Plants: Herbicide Resistance - Insect Resistance - Virus Resistance - Disease Resistance - PR Proteins - Antifungal Proteins - Abiotic Stress Tolerance - Long Shelf Life of Fruits and Flowers.	
Unit V	Applications Extraction and Purification of Phyto-Chemicals - Phytoremediation - Industrial Phytochemical Products from Plants: Alkaloids - Therapeutic Proteins - Herbal Drugs - Bioethanol and Biodiesel.	9

1. Chawla H.S, "Introduction to Plant Biotechnology", Science Publishers, New York.

Reference Books:

- 1. Sathya Narayana U, "Text book of biotechnology", Books and Allied Ltd, Bangalore, India.
- 2. Mantel S.H, Mathews J.A and Mickee R.A, "Elementary of Plant Breeding: An Introduction to genetic engineering in plants", Blackwell Scientific Publishers, London.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject Sen	nester No.	
16BTP14	ENVIRONMENTAL BIOTECHNOLOGY	IV	
Objective:	To study the interrelationship between living organism and environment, to get an i		
100	the hazards of Environment and to find out the solutions to protect the environment		
Unit No.	Topics	Hours	
Unit I	Basic Concepts Interactions between Environment and Biota - Limiting Factor - Energy Flow - Food Chain - Food Web and Tropic Levels - Ecological Pyramids. Biotic Community - Concept - Structure - Dominance - Fluctuation and Succession - Population Ecology.		
Unit II	Ecosystem Dynamics and Management Stability and Complexity of Ecosystems - Speciation and Extinctions - Environmental Impact Assessment - Conservation Strategies - Sustainable Development - Global Environmental Problems: Ozone Depletion - Green House Effect and Acid Rain.		
Unit III	Environmental pollution Types of Pollution - Methods for the Measurement of Pollution - Methodology of Environmental Management – the Problem Solving Approach, its Limitations - Air Pollution and its Control Through Biotechnology - Kind of Aquatic Habitats (fresh and marine) - Distribution and Impact of Environmental Factors on the Aquatic Biota – Productivity - Mineral Cycles and Biodegradation - different Aquatic Ecosystems.		
Unit IV	Xenobiotics Management Ecological Considerations - Decay Behavior and Degradative Plasmids - Hydrocarbons - Substituted Hydrocarbons - Oil Pollution - Surfactants - Pesticides - Biopesticides in Integrated Pest Management - Bioremediation of Contaminated Soils and Wastelands - Bioleaching - Solid Waste: Sources and Management (Composting, Vermiculture and Methane Production).		
Unit V	Waste Water Management Waste Water Collection - Physico-Chemical Properties of Water - Physical, Chemical and Biological Treatment Processes - Activated Sludge - Oxidation Tank - Trickling Filter - Towers - Rotating Discs - Rotating Drums - Oxidation Ponds - Anaerobic Digestion - Anaerobic Filters - Up Flow Anaerobic Sludge Blanket Reactors. Treatment Processes for Waste Waters of Dairy - Distillery - Tannery - Sugar - Antibiotic Industries.		

1. Alan Scragg, "Environmental Biotechnology", Pearson Education Limited, England.

Reference Books:

1. Jogdand S.N, "Environmental Biotechnology", Himalaya Publishing House Pvt. Ltd, New Delhi.

 $2. \, \textit{Metcalf and Eddy}, \, \textit{``Wastewater Engineering-Treatment, Disposal and Reuse''}, \, \textit{McGraw publications}, \, \textit{New Delhi} \, .$

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.		emester No.
16BTP15	DEVELOPMENTAL BIOLOGY AND BEHAVIORAL STUDIES	III
Objective:	To impart knowledge on the steps involved in the developmental biology and a	
	knowledge on how evolutionary principles can be applied to understand huma	n behavior.
Unit No.	Topics	Hours
Unit I	Basic Concepts of Development Potency – commitment – specification – induction – competence - determination and differentiation - morphogenetic gradients - cell fate and cell lineages - ste cells - genomic equivalence and the cytoplasmic determinants – imprinting mutants and transgenics in analysis of development.	m 9
Unit II	Gametogenesis, Fertilization and Early Development Production of gametes - cell surface molecules in sperm-egg recognition animals - embryo sac development - zygote formation - cleavage - blastulation gastrulation and germ layers in animals. Morphogenesis and Organogenesis Plants: Organization of seed germination - shoot - root and leaf development transition to flowering and floral development in Arabidopsis and Antirrhimum.	in 10
Unit III	Morphogenesis and Organogenesis in Animal Axes and pattern formation in amphibia and chick. Organogenesis – eye ler induction - limb development and regeneration in vertebrates; differentiation of neurons. Post embryonic development - larval formation – metamorphosis environmental regulation for normal development and sex determinatio Mechanism of Apoptosis – Necrosis – Autophagy - Atrophic Factors - Tissu Infiltration - aging and senescence.	of - n.
Unit IV	Introduction to Evolution and Origin of Cells Lamarck; Darwin – concepts of variation – struggle - fitness and natural selections the evolutionary synthesis. Origin of basic biological molecules - abiot synthesis of organic monomers and polymers - concept of Oparin and Haldane experiment of Miller (1953) - evolution of prokaryotes - evolution of unicellulate eukaryotes.	ic 9
Unit V	Brain, Behavior Relationship Approaches and methods in study of behavior - proximate and ultimate causatic - altruism and evolution - group selection, kin selection, reciprocal altruism Social communication - social dominance - use of space and territoriality - matin systems - parental investment and reproductive success - parental care aggressive behavior - migration - orientation and navigation.	- 10

1. Mohan P Arora, "Evolutionary Biology", Himalaya Publishing House, Mumbai, India.

Reference Books:

1. Geral P. Schatten, "Current topics in Developmental Biology", Academic Press, USA.

2. Wallace A, "The origin of animal body plans: A study in Evolutionary Developmental Biology". Cambridge University Press, Cambridge

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject Se	emester No.
16BTP15	BIOTECHNIQUES	
Objective:	This course presents the principles and applications of Biotechnology exploimolecules and applications of biophysical methods.	olaining the
Unit No.	Topics	Hours
Unit I	Histochemical and Immunotechniques Antibody generation - detection of molecules using ELISA – RIA - western blo - immunoprecipitation - flow cytometry and immunofluorescence microscopy Detection of molecules in living cells - <i>in situ</i> localization by techniques such a FISH and GISH.	. 9
Unit II	Biophysical Methods Analysis of biomolecules using UV/visible – fluorescence - circular dichroism NMR and ESR spectroscopy - structure determination using X-ray diffraction and NMR; analysis using light scattering - different types of mass spectrometry and surface plasma resonance methods.	d 10
Unit III	Radiolabeling Techniques Properties of different types of radioisotopes normally used in biology - thei detection and measurement - incorporation of radioisotopes in biological tissue and cells - molecular imaging of radioactive material - safety guidelines.	
Unit IV	Microscopic Techniques Visualization of cells and subcellular components by light microscopy - resolving powers of different microscopes - microscopy of living cells - scanning and transmission microscopes - Different fixation and staining techniques for EM freeze-etch and freeze-fracture methods for EM - image processing methods in microscopy.	d 10
Unit V	Electrophysiological Methods Single neuron recording - patch-clamp recording - ECG - Brain activity recording - lesion and stimulation of brain - pharmacological testing - PET - MRI - fMR - CAT.	

1. Sawhney S.K and Randhir Singh, "Introductory Practical Biochemistry". Narosa Publishing House, New Delhi. Reference Books:

1. Gedder A and Balsar L.E, "Principles of Applied Biomedical Instrumentation". John Wiley and Sons, America.

2. Boyer, Rodney F. Benjamin and Cummins, "Modern Experimental Biochemistry", Addisson Wesley Longman, San Francisco.

Code No.	Subject		ter No.
16BTP17	FOOD BIOTECHNOLOGY		V
Objective:	To enable the students to understand the concepts of food preservation, p management and packaging and its role in biotechnology.		oduction,
Unit No.	Topics		Hours
Unit I	Food Production Technology Storage - handling and Production of fruits and vegetable juices - Prepar jam – jelly - marmalade and tomato products (sauce and ketchup), Produ pectin, vitamins from apple pomace; milk - Composition and Var Pasteurization (LTLT and HTST), sterilization and UHT techniques; Proof Milk and Milk products – Cheese, Yogurt including probiotic dairy p Cream, butter, ghee, Ice-cream, Infant formulae, Milk powder, SCM alcoholic beverages, Processing of tea - coffee and cocoa.	ction of lieties – locessing roducts,	12
Unit II	Preservation Technology Introduction to food preservation – Objectives and techniques - Canning - sin canned foods. Dehydration and drying of food items - Low temperservation: cold storage - cold chain – freezing (including cryogenic freezervation by fermentation: curing and pickling. Non-thermal (expressure processing) and minimal processing technologies - Ionization ratuse of preservative in foods: chemical preservative – biopreservatives.	perature eezing). g. high	12
Unit III	Food Analysis Technology Major ingredients present in different product - Food additives: colour - vitamins - Microbial and Chemical safety of food products (heavy metal toxins, pesticide and herbicide contamination). Hygiene and sa requirement in food processing and fermentation industries; Cleaning - sa & pest control in food processing - storage and service areas.	, fungal initation	12
Unit IV	Quality control and Management Definition - Quality specifications and quality attributes of differen Quality control programs: History and development - Total quality con management. Quality assurance - ISO 9000 series. Food laws and regu PFA - FPO - MFPO - Essential Commodities Act - Sugarcane (control) FSSA. Food Safety Management Systems: Pre-requisites of HACCP - ISO	trol and ulations: Order –	12
Unit V	Packaging Functions of packaging - Type of packaging materials - Selection of packaging for different foods - Selective properties of packaging film - Me packaging and equipment used - Printing of packages - Barcodes & other - Packaging regulations - Packaging and food preservation - Dispackaging materials - Rigid and semi rigid containers - Flexible consealing equipment - Labelling - Aseptic and shrink packaging.	ackaging thods of marking posal of	12

1. Ralph Early, "Guide to Quality Management system for the food industry", Springer Publications, USA.

Reference Books:

1. Sara J. Risch and Joseph H. Hotchkiss. "Food and Packaging Interactions", American Chemical Society, Washington DC.

Desrosier W, "Technology of Food Preservation", CBS Publishers, New Delhi

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject	Seme	ster No.
16BTP17	CONSERVATION BIOLOGY		IV
Objective:	Helps to impart knowledge on ecological and evolutionary interactions be and their environment	tween o	organisms
Unit No.	Topics		Hours
Unit I	Biodiversity; Species Concepts; Animal Diversity What is Biodiversity - Components of Biodiversity (Ecosystem, Geneti Species diversity) - Assigning values to biodiversity - Species concepts - A diversity: (Distribution, inventory, species richness) - Biodiversity Ho (Western Ghats, Indo-Burma region).	nimal	12
Unit II	Loss of Animal Diversity, Status of Species Extinctions Past rates of Extinctions - Concepts of Island biogeography and extinction on Islands - Human induced, Modern and local extinctions - Population redu - threats to wildlife (examples) - Habitat loss, degradation and fragment Threats to animal diversity in India - Status of species: Rare - endemi threatened species - Measuring status of species in the wild - IUCN Re (Assessments and methodologies) - Status of Indian animals.	ation ation. c and	12
·Unit III	Conservation: Tools In Animal Conservation What is conservation biology? - In situ and Ex situ conservation of Indian an (Case studies) - Population management - Project Tiger and Elephant - Cabreeding programme - peoples participation in conservation - Successe failures of conservation actions in India (Case study) - Tools in Conservation for various data on wildlife - GIS - remote sensing - Land model – PVA and CAMP processes.	aptive s and ation:	12
Unit IV	Animal Laws And Policies In India; Economics of Biodiversity Conserved Wildlife Protection Act of India (1972) - Protected Area network - forest prevention of cruelty to Animal Act - Convention on Biological diverting International Trade in endangered species - Zoo policy - Laws and applications in Zoological parks - wildlife sanctuaries and biosphere rese Economics of biodiversity conservation.	oolicy sity - their	12
Unit V	Conservation Education and Awareness Wildlife / Animal magazines, Journals- How to write popular and Scie articles - Magazine and Journal information - Wildlife - nature - environ games (examples) - Role of NGO's and Government organizations in w conservation - Wildlife celebration days in India - Biotechnology in conserv	nment ildlife	12

1. Primack R.B, "Essentials of Conservation Biology", Sinauer Associates, USA.

Reference Books:

1. Meffe G.K and Carroll C.R. "Principles of Conservation Biology", Sinauer Associates, USA.

2. Groom Bridge B, "Global Biodiversity: Status of the Earth's Living Resources", Chapman and Hall, London.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject	Semester No.	
16BTP18	PRACTICAL III - LAB IN IMMUNOLOGY, PHARMACEUTICAL AND ANIMAL BIOTECHNOLOGY	III & IV	
Objective:	To give laboratory training in different Immunotechniques, techniques and also to provide the fundamentals of Animal Cell (
	Tonics		

Topics

Immunology

- 1. Demonstration of animal handling for experimental purposes, cervical dislocation, dissection of mice, cardiac puncture, blood sample preparation and its handling.
- 2. Immunization and generation of antiserum in animals against antigen.
- 3. Separation of IgG using affinity chromatography.
- 4. Blood grouping and counting of blood cells.
- 5. Antigen-Antibody Interactions: Radial Immunodiffusion, Ouchterlony Double Diffusion Precipitin Ring Test.
- 6. Immunoelectrophoresis and Rocket Immunoelectrophoresis.
- 7. Antibody titre by ELISA.
- 8. SDS-PAGE and Immunoblotting.
- 9. Separation of mononuclear cells from Human peripheral blood.

Pharmaceutical Biotechnology

- 10. Various modes of administration of drugs: Intravenous, Intramuscular, Intraperitoneal, Intradermal.
- 11. Acute toxicity testing of drugs.
- 12. Determination of analgesic and anti-inflammatory activity of a compound.
- 13. Spectrophotometric determination of Allantoin and Griseofulvin.
- 14. Microbial analysis of Pharamaceuticals (syrups).
- 15. DPPH and SOD Antioxidant Assay.

Animal Biotechnology

- 16. Sterilization techniques
- 17. Preparation of culture media and sera.
- 18. Preparation of primary cell culture.
- 19. Trypsinizing and subculturing cells from a monolayer.
- 20. Passaging cells in suspension culture.
- 21. Determining cell umber and viability with a hemocytometer and Trypan blue staining.
- 22. Preservation of cells.

Reference Books:

- 1. Leslie Hudson and Hay F.C, "Practical Immunology", Blackwell Scientific Publications, London.
- 2. Gary Walsh, "Biopharmaceuticals", John Wiley & Sons Inc, London.
- 3. Ian Freshney R, "Animal Cell Culture: A Practical Approach", IRL Press, USA.

BOS Meeting approved:

Approved in First Academic Council meeting held on 09-07-2016

Code No.	Subject	Semester No.	
16BTP19	PRACTICAL IV -		
	LAB IN PLANT BIOTECHNOLOGY	III & IV	
	AND ENVIRONMENTAL BIOTECHNOLOGY		
Objective:	After successful completion of the course, students will be	be aware of various	
	culture techniques in PTC; Production of transgenic plants. Environmental la		
helps to impart knowledge on various tests involved in waste water		ater treatment.	
Tonics			

Topics

Plant Biotechnology

- 1. PTC Laboratory Organization.
- 2. Preparation of PTC Medium.
- 3. Callus Induction and Differentiation.
- 4. In Vitro Germination of Seeds.
- 5. Embryo culture.
- 6. Somatic embryogenesis.
- 7. Protoplast isolation and protoplast fusion.
- 8. Artificial seeds production.
- 9. Meristem culture.
- 10. Isolation of genomic DNA from plant tissue.
- 11. Isolation of RNA from plant tissue.
- 12. Multiple Shoot Induction.
- 13. Secondary Metabolite Production through Cell Suspension Culture and Quantification.

Environmental Biotechnology

- 14. Sampling techniques: Waste water analysis for physico chemical characteristics such as pH, conductivity, TDS, DO, BOD, COD, CO2, alkalinity, nutrients, chlorides, hardness, settle ability of solids.
- 15. Isolation of microorganisms (Bacteria and Fungi) from polluted environment.
- 16. Microbial degradation of hydrocarbons.
- 17. Removal of Heavy metals from industrial effluent.

Reference Books:

1. Robert Nicholas T and Dennis John G. "Plant Tissue Culture Concepts and Laboratory Exercise", CRC Press,

Trivedy K, "Advances in Waste Water Treatment Technologies (Volumes I and II)", Global Science publications,