HINDUSTHAN COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) COIMBATORE – 641 028.

SCHEME OF EXAMINATION – CBCS PATTERN M.Sc., ELECTRONICS AND COMMUNICATION SYSTEM

(For the students admitted from the Academic year 2016–2017 and onwards)

ý					Max. Ma	arks	
CODE No.	SUBJECT	LECTURE Hrs./WEEK	EXAM. Dur. Hrs.	IE	9	Total	Credit Points
First Semester							
16ELP01	Digital and Network Communication	5	3	25	75	100	4
16ELP02	Microwave and RADAR Navigation System	5	3	25	75	100	4
16ELP03	8051Microcontroller with C Programming	5	3	25	75	100	4
16ELP04	Industrial and Power Electronics	5	3	25	75	100	4
16ELP05	Practical I: Digital Communication Systems	5	5	40	60	100	4
16ELP06	Practical II: 8051 Microcontroller and its Applications	5	5	40	60	100	4
Second Semester	•						
16ELP07	Optical Fiber Communication	5	3	25	75	100	4
16ELP08	Mechatronics and Control Systems	5	3	25	75	100	4
16ELP09	Embedded System and RTOS	5	3	25	75	100	4
16ELP10	Digital System Design using VHDL	5	3	25	75	100	4
16ELP11	Practical III: Optical and Microwave Laboratory	4	5	40	60	100	4
16ELP12	Practical IV: Embedded System and RTOS	4	5	40	60	100	4
16GSP01	Skill Based: Cyber Security	2	-	100	-	100	2
Third Semester							
16ELP13	Mobile Communication	5	3	25	75	100	4
16ELP14	Digital Signal Processing	5	3	25	75	100	4
16ELP15	Nanoelectronics and Nanosystems	5	3	25	75	100	4
16ELP16	Modern VLSI Design	5	3	25	75	100	4
16ELP17	Practical V: DSP Laboratory	5	5	40	60	100	4
16ELP18	Practical VI: VLSI Design	5	5	40	60	100	4
Fourth Semester							
16ELP19	Elective I – (A) Wireless Sensor Networks (OR) (B) ARM Core Processor	5	3	25	75	100	4
16ELP20	Elective II – (A) Real Time System Design (OR) (B) Virtual Instrumentation	5	3	25	75	100	4
16ELP21	Elective Practical: (A) Networking Laboratory (OR) (B) Virtual Instrumentation	5	5	40	60	100	4
16ELP22	Project Work	1	-	50	150	200	4
							90

REGULATIONS

1. Breakup Marks for IE (Theory papers)

One Test Model Exam - 10 Marks

5 Marks

Assignments - 5 Marks

Seminar

5 Marks

Total

- 25 Marks

Question Paper Pattern for IE test I (for 50 Marks) (2 hours)

Section-A (18 Marks)

3 x 6=18 Marks

Answer ALL Questions

Either or Type

ALL questions carry EQUAL Marks

Section-B (32 Marks)

2 x 16=32 Marks

Answer any TWO Questions out of three questions.

ALL questions carry EQUAL Marks

Total 50 Marks

Question Paper Pattern for IE Model Exam (for 75 Marks) (3 hours)

Section-A (30 Marks)

 $5 \times 6 = 30 \text{ Marks}$

Answer ALL Questions

One Question from each unit with Either or Type

ALL questions carry EQUAL Marks

Section-B (45 Marks)

3 x 15=45 Marks

Answer any THREE Questions out of five questions.

ALL questions carry EQUAL Marks

Total

75 Marks

2 a) Components for Practical I. E.

Components	Marks
Test –I	20
Test – II	20
Total	40

2 b) Components for Practical E. E.

Components	Marks
Completion of Experiments	50
Record	5
Viva	5
Total	60

3. Institutional/ Industrial Training, Mini and Major Project Work

Institutional / Industrial Training		Mini Project	Project	Work	
Components	Marks		Components		Marks
I.E			I. E		
Work Diary	25	_	a) Attendance Marks	20	
Report	50	50	b) Review Marks	30	50
Viva -voce	25	50			
Examination					
Total	100	100			
			$E.E^{*}$		
			a) Final Report Marks	120	
			b) Viva-voce Marks	30	150
				Total	200

^{*&}lt;sup>1</sup>Evaluation of report and conduct of viva- voce will be done jointly by Internal and External Examiners

4. Components for Cyber Security Paper

Marks
80
20
100

The question paper pattern is as follows:

a) Test I - 2 hours [4 out of 7 essay type questions]

 $4 \times 10 = 40 \text{Marks}$

b) Test II – 2 hours [4 out of 7 essay type questions]

 $4 \times 10 = 40 \text{ Marks}$

Total = 80 Marks

- The passing minimum for Cyber Security is 50
- In case the candidate fails to secure 50 marks, which is the passing minimum, he/she may have to reappear for the same in the subsequent semesters.

5. Question Paper Pattern for EE Theory (for 75 Marks) (3 hours)

Section-A (30 Marks)

5 x 6=30 Marks

Answer ALL Questions

One Question from each unit with Either or Type

ALL questions carry EQUAL Marks

Section-B (45 Marks)

3 x15=45 Marks

Answer any THREE Questions out of five questions.

ALL questions carry EQUAL Marks

Total 75 Marks

Code No	Subject	Semester No	
16ELP01	DIGITAL AND NETWORK COMMUNICATION	I	
Objective:	To enrich the basics of Digital and Network Communication Technic Students.		
Units	Topics	Hours	
Unit I	Signal Digitization Sampling Theorem – Pulse Amplitude Modulation – Pulse Position Modulation – Pulse Width Modulation – Pulse Code Modulation Quantization: Quantization Noise – Delta Modulation: Adaptive Delta Modulation – Signal Power – Signal to Quantization Noise Ratio – PCN and DM Voice Signal Comparison – Time Division Multiplexing CCITT.	13 M	
Unit II	Digital Radio Digital Radio Block Diagram – Digital Modulation: Amplitude Shi Keying – Frequency Shift Keying – Phase Shift Keying – Binary Phase Shift Keying – Quadrature Phase Shift Keying – Quadrature Amplitude Modulation – Digital Demodulation: Coherent Demodulation – Coherent Detection – FSK Demodulator – BPSK Demodulator – QPSI Demodulation – QAM Demodulation.	e e 13	
Unit III	Data Communication Introduction – Basic Terms and Concepts – Line Configurations Topology – Transmission Media – MODEM: Standard and Types Analog and Digital transmission: Encoding and Modulating – Channel Capacity – Base Band and Broad Band – Transmission Impairments Multiplexing: FDM – TDM – Error Detection and Control: CRC.	_ 10	
Unit IV	Network Architecture and Protocols Layered Architecture – OSI model – Functions of Layers – Data Lin Control Protocols – ARQ – Stop and Wait – Sliding Window – Go bac N and Selective Repeat – Asynchronous Protocol: X Modem – Modem – Kermit – Synchronous Protocol: BSC – SDLC – HDLC – TCP/I Model – SMTP – HTTP – FTP.	k Y 12	
Unit V	LAN and ISDN LAN: Standard, Protocol – IEEE 802 Standards: ETHERNET – LLC MAC – CSMA/CD – Token Ring – Token Bus – FDDI –ALOHA SONET – ISDN: IDN – Channels – User Interfaces – ISDN Layers Broad Band ISDN – Frame Relay – ATM: Concept and Architecture ISDN Protocol– Physical Layer Protocol – D–channel Data Link Layer Layer 3 Protocols– Network Signaling Systems: SS7 Protocol.	12	

- 1. Harold Kolimbiris, "Digital Communication Systems with Satellite and Fiber Optics Applications", Pearson Education, Third Indian Reprint, 2004. (Unit – I&II)
- Behrous. A. Forouzan, "Data Communication and Networking", Tata McGraw Hill, fourth Edition, 2000. (Unit – III, IV and V)

Reference Books:

- John G. Proakis, "Digital Communications", McGraw-Hill Higher Education, fourth Edition, 2000.
 Ulysess Black, "Data Communications and Distributed Networks", III Edition, 2012.

Head of the Department Department of Electronics Hindusthan College of Arts & Science Coimbatore-641 028

Page 4 of 27

Code No	Subject	Semester No
16ELP02	MICROWAVE AND RADAR NAVIGATION SYSTEM	I
Objective:	To enable the Students to learn the operations of Microwave Devices & Circ	
	to get deep Knowledge in RADAR and its Navigation Systems.	
Units	Topics	Hours
Unit I	EM Wave Theory Introduction to Microwaves: History – Region and Band Designations Advantages – Applications – Maxwell's Equations: Ampere's Law Faraday's Law – Gauss Law–Wave Equations – TEM/TE/TM/HE Wav Definitions –Types of Waveguides– Propagation of Waves in Rectangular Waveguides– TE and TM Modes–Propagation of TM Waves Rectangular Waveguide–TM Modes in Rectangular Waveguides.	ve ar 12
Unit II	Microwave Devices Classification of Solid State Microwave Devices – Varactor Diodes – PI Diode–Schottky Barrier Diode (SBD) – Tunnel Diode –Gunn Diode IMPATT Diode–TRAPATT Diode–BARITT Diodes – Quantum Electronic Devices.	_ 12
Unit III	Microwave Amplifiers and Oscillators Klystrons: Two Cavity Klystron Amplifier–Multicavity Klystron–Reflet Klystron–Traveling Wave Tube (TWT): Construction–Operation Backward Wave Oscillator – Magnetrons: Cavity Magnetron Operation Sustained Oscillations in Magnetron–Applications.	12
Unit IV	Microwave Antennas Horn Antenna: Sectoral E & H-plane Horn- Pyramidal Horn and Conic. Horn - Parabolic Reflector: Feed for Parabolic Reflector - Ler Antenna- Slot Antenna - Micro Strip Antenna: Operation - Methods of Analysis - Polarization - Dual frequency.	ns 12
Unit V	RADAR Block Diagram – Classification: Doppler – Pulsed – Free Space RADA Range Equation – Maximum Unambiguous Range –RADAR Receivers Modulators – RADAR Displays: Plan Position Indicator (PPI) – Dopple Effect – CW Doppler RADAR – Moving Target Indicator (MT RADAR – Frequency Modulated CW RADAR – Radio Navigationa Aids: LORAN.	er 12

- 1. Dr. Kulkarni. M, "Microwave and Radar Engineering", Umesh Publications, Fifth Revised Edition, 2015.
- 2. Prasad K. D, "Antenna and Wave Propagation", Sathya Prakashan Publication, Third Edition, Reprint, 2004

Reference Book:

1. Merrill I. Skolnik, "Introduction to RADAR Systems", Tata McGraw-Hill, Third Edition, Fifth Reprint, 2002.

Page **5** of **27**

Code No	Subject	Semester No
16ELP03	8051 MICROCONTROLLER WITH C PROGRAMMING	
Objective:	To enable the Students to learn the Instruction Set, Programming and Interference of 8051 Misses and III	
Units	concepts of 8051 Microcontroller.	
Circs	Topics	Hours
	Overview of 8051	
Unit I	Introduction to Computing - Microprocessor and Microcontrollers	_
OIII I	Microcontrollers and Embedded Processors - Overview of 8051 Family	12
	8051 Architecture – Timers – Registers and Memory Organizations.	=
	8051 Assembly Language Programming	
Unit II	Inside the 8051 - Pin Out - Instruction Set: Addressing Modes - Dat	a
	Transfer Instruction - Logical Instruction- Arithmetic Instructions	_ 12
	Jump and Call Instructions -Bit Oriented Instructions - Flags and Stack.	
	Programming with C	
Unit III	Data Types - Time Delay Programming - I/O Programming - Logi	С
CIII III	Operations - Arithmetic Operations - Timer Programming - Counte	1 12
	Programming.	
	8051 Interrupts & Peripherals	
Unit IV	8051 Interrupts - Programming External Hardware Interrupts - 805	1
CIII I V	Serial Communication Programming - Programming with Seria	1 12
	Communication Interrupts – Peripheral and Interrupt Programming in C.	
	Real World Applications and Case Studies	
	LCD Interfacing - Keyboard Interfacing - Parallel and Serial ADC	
Unit V	Interfacing - DAC Interfacing - Sensor Interfacing and Signa	12
	Conditioning - RTC Interfacing - Relays and Opto-Isolator Interfacing -	-
	Stepper Motor Interfacing – DC Motor Interfacing and PWM.	

 Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems Using Assembly and C" by PHI, 2nd Edition, 2006.

Reference Book:

1. Kenneth J. Ayala, "The 8051 Microcontroller", Delmar Cengage Learning, 3rd Edition, 2004.

Code No	Subject	Semester No	
16ELP04	INDUSTRIAL AND POWER ELECTRONICS		
Objective:	To impart the Knowledge of different types of Power Semiconductor Devices and their Switching Characteristic Applications to the Students.		
Units	Topics	Hours	
	Power Electronic Devices		
	Introduction - Power Semiconductor Devices: Power Diodes - Power	er	
Unit I	Transistors: Power MOSFET - Insulated Gate Bipolar Transistor	or 12	
	(IGBT)- Thyristors: SCR, TRIAC - Other Power Electronic Devices	s:	
	SIT-MCT-PUT-SCS-SUS-GTO-SITH.		
	Controlled Rectifiers	-	
	Controlled Rectifiers: Phase Controlled Converter - Single-Phase Sen	ni	
Unit II	Converter - Single-Phase Series Converter - DC Choppers: Step Dow	n 12	
	Operation: Step Down with RL Load -Step Up Operation - Switch Mod	e 12	
	Regulator: Buck Regulator - Boost Regulator - Buck-Boost Regulator	_	
	CUK Regulator.		
	Static Switches & AC Voltage Controllers		
	AC Switches: Single Phase -Three Phase - Three Phase Reversing	g	
Unit III	Switches - AC Switches for Bus Transfer - DC Switches- Solid Stat	e 13	
	Relays - AC Voltage Controller: ON-OFF Control -Phase Control	- 13	
	Single Phase Bidirectional Controllers: Resistive Loads - Inductiv	е	
	Loads- Cyclo Converters: Single Phase Cyclo Converters.	-	
	Inverters		
Unit IV	Single Phase Bridge Inverters – Three Phase Inverters – Voltage Control	: 11	
	Single PWM -Multiple PWM -Sinusoidal PWM - Phase Displacement	t	
	Control – 60–Degree PWM – Third–Harmonic PWM.		
	Power Supplies		
Unit V	DC Power Supplies: Switched Mode - Resonant - Bidirectional - AC	12	
	Power Supplies: Switched Mode - Resonant - Bidirectional - UPS -		
	$Static\ Circuit\ Breakers-Battery\ Charger-Emergency\ Lighting\ System.$		

- Rashid .M.H, "Power Electronics Circuits, Devices and Applications", Third Edition, Prentice Hall, 2011.
- 2. Dr.Bimbhra.P.S, "Power Electronics", Khanna Publishers, Fifth Edition, 2014.

Head of the Department
Department of Electronics
Hindusthan College of Arts & Science
Coimbatore-641 028

Page **7** of **27**

Code No	Subject	Semester No
16ELP05	PRACTICAL I: DIGITAL COMMUNICATION SYSTEMS	I

- 1. PAM Generation and Detection.
- 2. PWM Generation and Detection.
- 3. PPM Generation and Detection.
- 4. Frequency Sampling.
- 5. Pulse Code Modulation and Demodulation.
- 6. Linear Pulse Code Modulation and Demodulation.
- 7. ASK Generation and Detection.
- 8. FSK Generation and Detection.
- 9. PSK Generation and Detection.
- 10. QPSK Generation and Detection.
- 11. DPSK Generation and Detection.
- 12. BPSK Generation and Detection.
- 13. QAM Generation and Detection
- 14. Delta Modulation and Demodulation.
- 15. Adaptive Delta Modulation and Demodulation.

Code No	Subject	Semester No
16ELP06	PRACTICAL II: 8051 MICROCONTROLLER AND ITS APPLICATIONS	I

- 1. Arithmetic and Logic Operations.
- 2. Data Transfer with Parallel Port.
- 3. Square Wave Generation using Internal Timer.
- 4. PWM Generation.
- 5. Solid State Relay Interface using Interrupt.
- 6. Interfacing Matrix Keypad.
- 7. Seven Segment Display Interface.
- 8. LCD Interface.
- 9. DAC Interface.
- 10. ADC Interface.
- 11. Stepper Motor Interface.
- 12. Serial Communication Interface.
- 13. Digital Clock.
- 14. Traffic Light Controller.
- 15. Water Level Controller.

Code No	Subject	Semester No
16ELP07	OPTICAL FIBER COMMUNICATION	
Objective: Units	To facilitate the Knowledge about Optical Fiber Fabrication, Optical Sources Detectors and its Transmission Techniques to the Students. Topics	
	•	Hours
Unit I	Optical Fiber Fabrication Motivation for Light Wave Communications – Optical Spectral Bands Nature of Light – Basic Optical Laws – Fiber Materials – Fiber Fabrication: Classification – Chemical Vapor Deposition – Multi Element Glasses – Phasil System – Comparisons of Various Fabrication Processes – Drawing and Coating – Double Crucible Method – Rod— Tube Method – Mechanical Properties.	er
Unit II	Optical Fibers and their Properties Basic Structure of Optical Fiber —Conditions for Total Internated Reflection—Principles of light propagation — Types of fibers: Step Index of Graded Index fibers — Modes of Propagation: Single and Multimode Calculation of Acceptance Angle —Numerical Aperture —Advantages and Application.	% 10
Unit III	Signal Degradation Attenuation – Absorption – Scattering losses – Bending losses – Core an Cladding losses – Signal distortion in Fibers – Modal Delay – Factor contributing to dispersion – Group delay – Material dispersion Waveguide dispersion – Signal distortion in Single Mode Fibers Polarization mode dispersion – Characteristics of single mode fiber – Cut off wavelength – Mode–Field Diameter – Single mode fiber bending loss Dispersion power penalty – Total dispersion delay – Maximum transmission rate – Dispersion shifted fiber.	15
Unit IV	Light Sources and Photo Detectors Light Sources: LED –Fiber LED Coupling –LASERS –Operation types- Spatial Emission– Current v/s output characteristics. Photo Detectors: Characteristics –Photo Emissive Type –Photo Conductive –Photo Voltain Devices –PIN Photo diode –Avalanche Photo Diode.	15
Unit V	Optical Networks & Applications Wave Length Division Multiplexing – Dense WLDM – Digital Subscriber Line Technology – SONET/SDH: SONET Network Layers – Frame Format – SONET Multiplexing – SONET Topologies – SDH – Community Antenna Television (CATV) – Special Applications: Digital Video Transmission Using Optical Fibers networks receiver – High performance receiver – Design of fiber optic receiver – Fiber based MODEMS.	10 1 1

- 1. Gerd Keiser, "Optical Fiber Communications", TMH, fourth Edition, 10th Reprint, 2011.
- 2. Subir Kumar Sarkar, "Optical Fibres and Fibre Optic Communication Systems" S. Chand & Company LTD.

Reference Book:

1. Robert J Schoenbeck "Electronic Communications Modulation and Transmission", PHI, 1999.

Department of Electronics
Hindusthan College of Arts & Science
Coimbatore-641-028

Page 10 of 27

Code No	Subject	Semester No
16ELP08	MECHATRONICS AND CONTROL SYSTEMS	II
Objective:	To introduce the concepts of Mechatronics, Transducers & Signal C Systems and also import the Knowledge on various Actuation Systems R concept of PLC to the Students.	
Units	Topics	Hours
Unit I	Sensors & Transducers Introduction to Mechatronic Systems – Sensors and Transducers Performance Terminology – Static and Dynamic Characteristics Displacement, Position and Proximity Sensors – Velocity and Motio Sensors – Liquid Flow – Temperature and Light Sensors – Selection of Sensors.	_ 10
Unit II	Signal Conditioning and Data Presentation Systems Signal Conditioning – Op–Amps in Signal Conditioning – Protection an Filtering – Compensation Techniques – Digital Signals – D to A and A t D Conversion: Types – Multiplexers – Data Acquisitions – Digital Signal Processing and Pulse Modulation–Data Presentation Elements – Data Acquisition and Measurement System.	o 15
Unit III	Dynamic Responses, Transfer Function and Frequency Response of a System Modeling Dynamic Systems – Transfer Functions of a System – First and Second Order Systems – System in Series – System with Feedback Loops– Frequency Response of System – Bode Plots– Stability – Control Modes – Two Step Mode – Proportional Mode – Derivative and Integral Control – PID and Digital Controllers – Velocity and Adaptive Control Controller Tuning.	d k 12
Unit IV	Programmable Logic Controller (PLC) Basic Structure – Input / Output Processing – Programming – Mnemonics– Timers, Internal Relays and Counters – Shift Registers – Master and Jump Controls – Data Handling – Analogue Input / Output – Selection of PLC – Traditional and Mechatronic Design.	_ 13
Unit V	Overview of MEMS and Microsystems MEMS and Microsystems – Typical MEMS and Microsystem Products – Evolution of Microfabrication – Microsystems and Microelectronics – Multidisciplinary Nature of Microsystem Design and Manufacture – Microsystems and Miniaturization – Applications: Automotive Industry – Health Care Industry – Aerospace Industry – Industrial Products – Consumer Products – Telecommunications.	10

- 1. William Bolton "Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering" Pearson Education Publishers, New Delhi, Fourth Edition, 2014.
- 2. Tai-Ran-Hsu, "MEMS & Micro Systems Design and Manufacture", TMH, 2002.

Reference Books:

- 1. Frank D. Petruzella, "Programmable Logic Controllers", Tata McGraw Hill, Third Edition, 2010.
- 2. Verma. S.N, "Automatic Control Systems", Khanna Publishers.
- 3. Robert H. Biship, "The Mechatronics Hand Book", CRC Press, 2002.

Page **11** of **27**

Code No	Subject	Semester No
16ELP09	EMBEDDED SYSTEM AND RTOS	II
Objective:	To enable the Students to understand the various Embedded RTOS and to	
	Architecture of PIC Microcontroller to develop applications in Embedded Sy	
Units	Topics	Hours
Unit I	Embedded Systems Definition and Classification – Overview of Embedded Controllers Exemplary High Performance Processors – CISC and RISC Architectur – Hardware Unit in an Embedded System– Software Embedded into System – Exemplary Applications – Embedded Systems on a Chip VLSI circuit.	re 10
Unit II	PIC 16F877 Architecture and Instruction Set Device Overview – Architecture – Memory Organization – State Register– Option Register – INTCON Register – PCON Register – I/O Ports– Data EEPROM – Instruction Set: Byte Oriented Operations – B Oriented Operations – Literal and Control Operations.	0 15
Unit III	PIC Peripheral Features TIMER0 Module – TIMER1 Module – TIMER2 Module – Capture/ Compare/ PWM Modules – I ² C transmission and reception – USART – ADC Module – Special features of the CPU: Oscillator Selection – Power on Reset – Power up Timer – Oscillator Startup Timer – Brownout Reset – Interrupts – Watchdog Timer – SLEEP.	
Unit IV	Embedded Software Architecture & Operating System Services Round Robin – Round Robin with Interrupts – Function Queu Scheduling Architecture – Real Time Operating Systems (RTOS) – Task and Data – Semaphores and Shared Data– Message Queues, Mail Bo and Pipes – Timer Function – Events – Memory Management.	is 15
Unit V	Real Time Operating Systems Study of Micro C/OS-II - Vx Works - Other Popular RTOS - RTO System Level Functions - Task Service Functions - Time Dela Functions - Memory Allocation Related Functions - Semaphore Relate Functions - Mailbox Related Functions - Queue Related Functions Case Studies of Programming with RTOS: Case Definition, Multipl Tasks and their Functions - Creating a list of Tasks, Functions and IPCs Exemplary Coding Steps.	y d - e

- 1. Rajkamal, Embedded Systems Architecture, Programming and Design, TATA McGraw-Hill, First Reprint, 2003.
- Martin.P.Bates, "Programming 8-bit PIC Microcontrollers in C Interactive Hardware Simulation", Elsevier, Second Edition, 2008.
- 3. David E. Simon, "An Embedded Software Primer", Addison Wesley, Ninth Impression, 2011.

Reference Books:

- 1. Shibu KV, "Introduction to Embedded System" Tata McGraw Hill, 2010.
- Micro C OS II Reference Manual, Salvo User Manual & VX works Programmers Manual.
 PIC 16f877A Data Sheet.

Code No	Subject	Semester No
16ELP10	DIGITAL SYSTEM DESIGN USING VHDL	II
Objective:	To import the concepts of digital circuit design using VHDL and equip t develop new digital systems.	he students to
Units	Topics	Hours
	Digital Logic Design	
	Combinational Logic - Boolean Algebra and Algebraic Simplification	_
Unit I	Karnaugh Maps -Designing with NAND and NOR Gates - Flip-Flops an	d 12
	Latches - Mealy Sequential Circuit Design - Moore Sequential Circu	it
	Design - Sequential Circuit timing - Tristate Logic and Busses.	
	VHDL	
	Computer Aided Design - HDL - VHDL Description of Combinational	ıl
Unit II	Circuits - VHDL Modules - Sequential Statements - Modeling of Flip	_ 12
	Flops - Wait Statement and Delays - Data Types and Operators - VHD	
	Libraries.	
	VHDL Modeling	
Unit III Modeling Registers and Counters using VHDL Process Statement		- 12
	Behavior and Structural Modeling - Variables, Signals and Constants	
	Arrays – Loops in VHDL – Assert and Report Statement.	
	Programmable Logic Devices	
Unit IV	Overview of PLD - Simple Programmable Logic Devices - Comple	x 12
	Programmable Logic Devices (CPLD) - Field Programmable Gate Array	S
	(FPGA).	
	Design Examples	
¥1	BCD to Seven Segment Display Decoder - Adders - Traffic Ligh	
Unit V	Controllers - State Graphs for Control Circuits - Score Board an	
	Controller - Synchronization and Denouncing - Multiplier - Keypa	d
	Scanner – Binary Divider.	

- Charles H. Roth, Jr. Lizy Kurian John, "Digital System Design Using VHDL" Cengage Learning, First Indian Reprint, 2012.
- 2. Bhaskar.J, "VHDL Primer", PHI, Low price Edition, 2001.

Code No	Subject	Semester No
16ELP11	PRACTICAL III: OPTICAL AND MICROWAVE	II
	LABORATORY	

- 1. Study of Fiber Optic Trainer.
- 2. Establishment of Analog Fiber Optic Link.
- 3. Establishment of Digital Fiber Optic Link.
- 4. Measurement of Attenuation Loss.
- 5. Measurement of Bending Loss.
- 6. Measurement of Coupling Loss.
- 7. Study of Microwave Components and Instruments.
- 8. Reflex Klystron Characteristics. ·
- 9. Frequency Measurement of Reflex Klystron. '
- 10. VSWR Measurement.
- 11. Attenuator Characteristics. '
- 12. Study of Gunn Diode Oscillator.
- 13. Measurement of Unknown Load Impedance.
- 14. Isolator and Circulator Characteristics.
- 15. Horn Antenna Characteristics.

Code No	Subject	Semester No
16ELP12	PRACTICAL IV: EMBEDDED SYSTEM AND RTOS	II

(Using PIC 16F84A IC/ PIC 16F877 Kit/ RTOS Kit)

- 1. Delay Generation using Timer.
- 2. PWM Generation.
- 3. LED Interfacing and Object Counter.
- 4. Interfacing Solid State Relay.
- 5. Interfacing Seven Segment Display.
- 6. LCD Interface.
- 7. DAC Interface.
- 8. Internal ADC Programming.
- 9. External Event Counter using Timer-1.
- 10. Programming using Interrupts.
- 11. Serial Port Interfacing Using RS232.
- 12. Water Level Controller.
- 13. Stepper Motor Interface.
- 14. RTOS Multitasking.
- 15. Temperature Monitoring and Control.

Code No	Subject	Sem	ester No
16ELP13	MOBILE COMMUNICATION		III
Objective:	To make the Student familiar with the Cellular Concept, Design Network.	and	Wireless
Units	Topics		Hours
Unit I	Wireless Communication Systems Evolution – Paging Systems – Cordless and Cellular Telephone Systems – Trends in Cellular Radio and Personal Communications – Second Generation: 2.5G Mobile Radio Networks – TDMA Standards – IS–95B for 2.5G CDMA – Third Generation: W–CDMA – CDMA200 –TD– SCDMA – 4G features and challenges – Wireless Local Loop – Wireless Local Area Networks – Bluetooth and Personal Area Network.		12
Unit II	Cellular Concept Introduction – Frequency Reuse – Channel Assignment Strategies – Handoff Strategies – Interference and System Capacity: Co-channel Interference and System Capacity—Channel Planning for Wireless Systems—Adjacent Channel Interference—Power Control for Reducing Interference – Trunking and Grade of Service – Improving Coverage & Capacity in Cellular Systems: Cell Splitting – Sectoring.		12
Unit III	Multiple Access Techniques Multiple Access: FDMA - TDMA - SSMA - SDMA - Packet Radio: Protocols - CSMA - Reservation - Capture Effect - Capacity of Cellular Systems: Cellular CDMA.		12
Unit IV	Wireless Networks Differences Between Wireless and Fixed Telephone Networks: Public Switched Telephone Network (PSTN), Limitations, Merging Wireless Networks and PSTN – Development of Wireless Networks – Fixed Network Transmission Hierarchy – Wireless Data Services – Personal Communication Services/Networks (PCS/PCNs) – Protocols for Network Access.		12
Unit V	4G Networks 4G Vision – 4G Features and Challenges – Applications of 4G – 4G Technologies: Multicarrier Modulation, Smart Antenna Technique OFDM–MIMO Systems, Adaptive Modulation and Coding with time sle scheduler, Cognitive Radio.	s,	12

- Theodore S. Rappaport, "Wireless Communications, Principles, Practice", PHI, 2ndEdition, 2012.
 Gottapu Sasibhushana Rao, "Mobile Cellular Communication", Pearson, 2013.
- 3. Vijay Garg, "Wireless Communications and Networking", Elsevier, First Edition, 2007.

Reference Book:

1. William Stallings, "Wireless Communication and Networking", PHI, 2nd Edition, 2003.

Code No	Subject	Semester No
16ELP14	DIGITAL SIGNAL PROCESSING	III
Objective:	To impart Knowledge on the concept of Analyzing Continuous and Signals & Systems in the Time and Frequency Domain, Design Techniq Filters to the Students.	
Units	Topics	Hours
Unit I	Signals and Systems Introduction – Classification of Signals: Multichannel and Multidimensional signals, Continuous time and Discrete time signals, Analo and Digital Signals, Deterministic and Random Signals, Energy and Pow Signals, Periodic and Non–Periodic Signals – Signal Processing Systems Advantages of Digital Signal Processing – Elements of Digital Signal Processing System – Discrete Time Signals – Representation – Elementa Discrete Time Signals – Manipulation of Discrete Time Signals.	er 12 - al
Unit II	Discrete Time Systems Basic Building Block – Classification – Linear Time Invariant (LTI) Systems – Convolution of Two Discrete Time Signals – Procedure for Computing Convolution Sum – Linear Convolution – Properties of Convolution Sum – Sampling of Continuous Time Signals.	
Unit III	Transform and Analysis Introduction – Z–Transform – Region of Convergence – Properties of Z– Transform – Causality and Stability – Discrete Time Fourier Transform – Convergence – Properties of DTFT: Periodicity, Linearity, Differentiation in Frequency Domain, Parseval's Relation.	
Unit IV	Digital Filters Introduction – Major Considerations in Using Digital Filters Comparison Between Digital and Analog Filters – IIR and FIR Digit Filters – Realization Procedure for Digital Filters: Recursive, Nor recursive, FFT Realizations – Notch Filter – Comb Filter – All Par Filters.	al 12
Unit V	Applications Speech Processing: Speech Production Model – Channel Vocoder – Computer Voice Response System – Airborne Surveillance RADAR for Traffic Control (ATC) – Long Range Demonstration RADA (LRDR).	

- Farooq Husain, "Digital Signal Processing", Umesh Publications, 3rd Edition, 2012.
 Salivahanan . S, Vallavaraj. A, Gnanapriya. C, "Digital Signal Processing", Tata McGraw-Hill Publishing Company Limited, 13th Reprint, 2004.

Reference Book:

1. Ramesh Babu. P, "Digital Signal Processing", Scitech Publications, 2nd Edition, 2003.

Code No	Subject	Semester No
16ELP15	NANOELECTRONICS AND NANOSYSTEMS	III
Objective:	To make the Students familiar in the idea of Nanoelectronics and its implication the Nano System Design.	
Units	Topics	Hours
Unit I	Silicon Technology Development of Microelectronics – Challenge Initiated by Nanoelectronics – Potentials of Silicon Technology Microminiaturization: Methods and Limits – Mechanical Systems - Integrated Optoelectronics – From Microelectronics towards Bimolecular Electronics.	12
Unit II	Quantum Electronics Electromagnetic Fields and Photons – Schrodinger Equation – Electron in Potential Wells – Photons Interacting with Electron in Solids – Quantum Electronics: Quantum Electronic Devices – Short Channel MOS Transistor – Split Gate Transistor – Electron Wave Transistor – Electron Spin Transistor – Quantum Cellular Automata – Quantum Dot Array.	12
Unit III	Tunneling Devices Tunneling Element: Tunnel Effect and Tunneling Elements – Tunneling Diode – Resonant Tunneling Diode – Technology of RTD – Digita Circuit Design Based on RTD: Memory Circuits – Basic Logic Circuits – Dynamic Logic gates – Digital Circuit Design Based on RTBT.	1 12
Unit IV	Single Electron Transistor (SET) Principle of SET – Coulomb Blockade – Performance of SET – SET Technology – SET Circuit Design: Wiring and Drivers – Logic and Memory Circuits – SET Adder – Comparison Between SET and FET Circuit Design.	1 12
Unit V	Emerging Nano Systems Biological Networks – Biology Inspired Concepts – DNA Computer – Quantum Computer – Bioelectronics – Molecular Electronics – Fullerenes and Nano Tubes – Polymer Electronics – Self–Assembly – Optica Molecular Memories.	12

1. Goser. K, Glosekotter. P and Dienstuhl J, "Nanoelectronics and Nanosystems", Springer International Edition, First Indian Reprint, 2005.

Reference Books:

 Poole .C.P and Owens .F.J, "Introduction to Nanotechnology", John Wiley & Sons, 2003.
 Ratner M.A and Ratner .D, "Nanotechnology; a Gentle Introduction to the Next Big Idea", Prentice Hall, 2002.

Code No	Subject	Semester No
16ELP16	MODERN VLSI DESIGN	III
Objective:	To equip the Students to learn about the Modern VLSI and other Advanced process.	
Units	Topics	Hours
Unit I	VLSI Fabrication Technology History of VLSI – Fabrication: MOSFET – Wafer Manufacture – Wafe Cleaning – Doping and Impurities Addition – Growth & Deposition of Dielectric Films – Masking and Lithography – Etching and Metallization-Packing – Fabrication of Passive Components – Process Flow for CMOS Fabrication – Twin Tub Process.	f 12
Unit II	VLSI Design Flow VLSI Circuit Design Process – Design Flow – Architecture Specification and Design Constraints – HDL Capture and RTL Coding – Logic Simulation – Logic Synthesis – Logic Optimization – Formal Verification– Static Timing Analysis– Floor Planning – Placement & Routing – Layout Vs Schematic – Design Rule Check.	
Unit III	Programming Logic Devices Programmable Logic Array (PLA) – Programmable Array Logic (PAL) – Implementation Approaches in VLSI Design – Custom or Full Custom Design – Semicustom Design – Gate Arrays – Complex Programmable Logic Devices (CPLD) – CPLD Architectures.	12
Unit IV	Issues in Chip Design Requirements of Chip Design – System On Chip (SOC) – Chips Power Consumption – Clock – Chip Reliability – Analog Integration in the Digital Environment – Case Study.	12
Unit V	ASIC Design Chip Design – Design Methodologies: IBM ASICs– HP7100LC – Wiper Digital Video Chip – Kitchen Timer Chip: Specification and Architecture– Logic and Layout Design – Validation – Microprocessor Data Path: Clocking and Bus Design.	12

- 1. Lal Kishore.K, Prabhakar.V.S.V, "VLSI Design", I.K. International Publishing House Pvt. Ltd., 2010.(Unit I- IV)
- 2. Wolf .W, "Modern VLSI Design", Prentice Hall, 4th Edition, 2008.(Unit V)

Code No	Subject	Semester No
16ELP17	PRACTICAL V: DSP LABORATORY	III

$(Using\ TMS320C5XX/TMS320C54XX/TMS320C67XX/MATLAB\)$

- 1. Arithmetic Operations.
- 2. Convolution of Two Discrete Signals.
- 3. Correlation of Two Discrete Signals.
- 4. Waveform Generation.
- 5. Frequency Sampling Method.
- 6. Impulse, Step, Exponential & Ramp Functions.
- 7. Solving Z–Transform.
- 8. Solving Differential Equations.
- 9. Design of FIR Filter.
- 10. Design of IIR Filter.
- 11. Voice Storing & Retrieval
- 12. Quantization Noise.
- 13. Echo Cancellation
- 14. Amplitude Modulation and FFT Response.
- 15. Image Zooming and Shrinking

Code No	Subject	Semester No
16ELP18	PRACTICAL VI: VLSI Design	III

(Using Digital ICs / VHDL / Lab VIEW)

- 1. Solving of Boolean Equations.
- 2. Half Adder and Full Adder.
- 3. Half Subtractor and Full Subtractor.
- 4. Encoder and Decoder.
- 5. Multiplexer.
- 6. De-multiplexer.
- 7. Latches and Flip-Flops.
- 8. Parity Generator.
- 9. Comparators.
- 10. Shift Registers.
- 11. Simple ALU Design.
- 12. Synchronous and Asynchronous Counter.
- 13. Clock Divider and Generator.
- 14. FIFO Design.
- 15. UART and SPI Module.

Code No	Subject	Semester No
16ELP19	ELECTIVE I: (A) WIRELESS SENSOR NETWORKS	IV
Objective:	To equip the Students in Sensor Node essentials, Architectural details, M	
	Access, Routing Issues and the Energy Constrained Operational Scenario	
Units	Topics	Hours
Unit I	Wireless LANS, PANS AND MANS Introduction – Fundamentals of WLAN – Technical Issues – Network Architecture – IEEE 802.11– Physical Layer – MAC Layer Mechanism – CSMA/CA – Bluetooth – Specification – Transport Layer – Middlewark Protocol Group – Bluetooth Profiles – WLL – Generic WLL Architecture – Technologies – Broadband Wireless Access IEEE802.16– Differences Between IEEE 802.11 and 802.16 – Physical Layer – Data Link Layer.	12
Unit II	Wireless Internet Address Mobility – Inefficiency of Transport Layer and Application Layer Protocol – Mobile IP – Simultaneous Binding – Route Optimization– Mobile IP Variations – Handoffs – IPv6 Advancements – IP for Wireless Domain – Security in Mobile IP – TCP in Wireless Domain – TCP Over Wireless – TCPs – Traditional – Snoop – Indirect – Mobile Transaction–Oriented – Impact of Mobility.	
Unit III	AD-HOC Wireless Network Introduction - Issues - Medium Access Scheme - Routing - Multicasting - Transport Layer Protocol - Pricing Scheme - Qol Provisioning - Self-Organization - Security - Addressing - Servic Discovery - Energy Management - Deployment Consideration - Ad-Ho Wireless Internet.	S 12
Unit IV	Wireless Sensor Network Applications of Sensor Network, Comparisons with MANET – Issues and Design Challenges – Architecture – Layered and Clustered – Data Dissemination – Data Gathering MAC Protocols – Location Discovery Quality of Sensor Network – Coverage and Exposure.	a 12
Unit V	Recent Advances in Wireless Network UWB Radio Communication – Operation of UWB Systems – Comparisons with Other Technologies – Major Issues – Advantages and Disadvantages, Wi–Fi Systems– Service Provider Models, Issues Interoperability of Wi–Fi and WWAN, Multimode 802.11 – IEEI 802.11a/b/g – Software Radio–based Multimode System, Meghadoo Architecture.	12

B.

- Siva Ram Murthy C and Manoj B.S, "Ad Hoc Wireless Networks Architecture and Protocols", Pearson Education, 2nd Edition, 2012.
- 2. William Stallings, "Wireless Communication and Networks", Prentice Hall, second Edition, 2005.

Reference Book:

Kaveh Pahlavan and Prashant Krishnamurthy, "Principle of Wireless Network

— A unified approach",
Prentice Hall, 2006

Hindusthan College of Arts & Science
Coimbatore-641-028

Page 22 of 27

Code No	Subject	Semester No	
16ELP19	ELECTIVE I: (B) ARM CORE PROCESSOR	IV	
Objective:	To enable the Students to have familiar with an ARM Embedded System, to		
Units	of interfacing ARM Processor & Peripherals devices related to Embedded S		
Onits	Topics	Hours	
Unit I	Introduction to ARM Embedded System		
	RISC Design Philosophy -ARM Design Philosophy - Embedded System	n 12	
	Hardware Memory - Peripherals - Embedded System Software		
	Initialization (Boot) Code – Operating System – Applications.		
	ARM Processor Fundamentals		
	ARM Core Data Flow Model - Registers - Current Program Statu	S	
Unit II	Register (CPSR) - Processor Modes - Bank Registers -State and	1 12	
	Instruction Sets - Interrupts Masks - Condition Flags - Conditiona	1	
	Execution - Pipeline - Exceptions, Interrupts & Vector Table - Core	9	
	Extension – ARM Processor Families.		
	Efficient C Programming		
	C Compiler and Optimization - Basic C Data Types - C Looping	5	
Unit III	Structure- Register Allocation - Function Calls - Pointer Aliasing -	12	
	Structure Arrangement - Bit-fields - Unaligned Data and Endianness -		
	Division - Floating Point - Inline Functions and Inline Assembly -	- 2	
	Portability issues.		
	ARM7TDMI MCU (Analog Devices ADUC7128/29)		
	Features - Functional Block Diagram - General Description - Pir		
Unit IV	Configuration & Function Descriptions - Overview of the AR7TDMI	12	
	Core - Exceptions - ARM Registers Interrupt Latency - Memory		
	Organization - Memory Access - Flash/EE Memory - SRAM - Memory		
	Mapped Register.		
	Hardware Configuration		
Unit V	ADC - DAC - Oscillator and PLL - PWM - General Purpose		
	I/O- Serial Port MUX - UART Serial Interface - I ² C - Timer Life		
	Time- General Purpose Timer - Wake Up Timer - Watch Dog Timer -		
	General Purpose Timer 4.		

- 1. Andrew N.Sloss, Dominic Sysmes and Chris Wright "ARM System Development Guide", Morgan Kaufmann Publishers, Reprinted, 2016.
- 2. Data Sheet Reference (Analog Devices ADuc7128/29).

Reference Book:

1. Frank Vahid "Embedded System Design", Tata McGraw Hill Publication Company Ltd, Third Edition, Reprint, 2014.

Head of the Department
Department of Electronics
Hindusthan College of Arts & Science
Coimbatore-641 028

Page 23 of 27

Code No	Subject	Semester No	
16ELP20	ELECTIVE II: (A) REAL TIME SYSTEM DESIGN	IV	
Objective:	To enable the Students to design a real-time computer systems of their own.		
Units	Topics	Hours	
Unit I	Real Time Environment Functional Requirements – Temporal Requirements – Dependabilit Requirements – Classification of Real Time Systems – Real Time System Market – Examples: Controlling the Flow in a Pipe – Engine Control Rolling Mill. IoT: Vision – Drivers – Technical Issues –RFI Technology.	m 12	
Unit II	Embedded System Components Hardware Components: I/O Interfaces –Processor I/O Interconnection BUS Interconnection – High & Low Speed Serial Interconnection Memory Subsystems – Firmware Components: Boot Code – Devic Drivers – Operating System Services – RTOS System Softwar Mechanisms – Software Application Components.	_ e 12	
Unit III	Debugging Components Single Step Debugging – Power on Self–Test Diagnostics – Applicatio Level Debugging – Performance Tuning – High Availability an Reliability Design.		
Unit IV	System Life Cycle Lifecycle Overview - Requirements - Risk Analysis - High Level Design- Component Detailed Design - Component Unit Testing System Integration - Configuration Management - Version Control Regression Testing.	_ 12	
Unit V	Applications Continuous Media Applications: Video – Video Codecs – Audio Codec – VoIP. Robotic Media Applications: Robotic ARM – Automation an Autonomy. Computer Vision Applications: Object Tracking – Imag Processing for Object Recognition – Characterizing Cameras – Stere Vision.	d e 12	

- 1. Sam Siewert, "Real Time Embedded Systems and Components", Cengage Learning, Delhi, Seventeenth Indian Reprint, 2013. (Unit I)
- 2. Hermann Kopetz, "Real-Time Systems: Design Principles for Distributed Embedded Applications", Springer, Second Edition, 2011. (Unit II–V)

Reference Book:

1. Jonathan W. Valvano, "Embedded Microcomputer Systems: Real Time Interfacing", Cengage Learning, Third Edition, 2011.

Head of the Department
Department of Electronics
Hindusthan College of Arts & Science
Coimbatore-641 028

Page 24 of 27

Code No	Subject	Semester No
16ELP20	ELECTIVE II: (B) VIRTUAL INSTRUMENTATION	
Objective:	To study the basic concepts of virtual Instrumentation in LAB VIEW Progra	
	and to learn the concepts of Data Acquisition, signal Processing and Manipu	
Units	Topics	Hours
Unit I	Graphical System Design: Introduction – Graphical System Design Model – Design Flow With GSD – Virtual Instrumentation – Virtual Instrument With Traditional Instrument – Hardware and Software in VI-VI for Test, Control and Design – VI in The Engineering Process – V Beyond PC – GSD Using Lab VIEW – Graphical and Textual Programming	12 12
Unit II	Overview of Lab VIEW: Introduction – Advantage of Lab VIEW – Software Environment – Crating and Saving a VI – Front Panel and Block Diagram Toolbar – Palettes – Shortcut Menus – Front Panel Controls and Indicators – Block Diagram – Data Types – Data Flow Program – Lab VIEW Documentation Resources – Keyboard Shortcuts.	
Unit III	Repetition & Loops: Modular Programming In Lab VIEW –Introduction to Repetition and Loops – For and While Loop – Structures and Terminals– Shift Registers – Feedback Nodes – Control Timing – Communication Among Multiple Loops – Local and Global Variables Arrays: Arrays in Lab VIEW – Creating One, Two and Multiple Dimensional Arrays – Initializing, Deleting, Inserting Replacing Elements Rows, Columns and Pages Within Array – Clusters – Graphs and Charts.	12 i
Unit IV	Instrument Control & DAQ: GPIB – VISA – Instrument Drivers – Seria Port Communication – Introduction to Data Acquisition – Transducers – Signals – Signal Conditioning – DAQ Hardware Configuration and Hardware – Analog Inputs and Outputs – DAQ Software Architecture – DAQ Assistant.	12
Unit V	Applications of VI & IMAQ Vision Vision Basics – Image Processing and Analysis – Particle Analysis – Machine Vision – Motion Controller – Motor Amplifiers and Drives - Feedback Devices.	A. And

1. Jovitha Jerome, "Virtual Instrumentation using LABVIEW", PHI, 2010.

Reference Books:

- 1. Sanjay Gupta, Joseph John, "Virtual Instrumentation using LAbVIEW", McGraw Hill, second Edition, 2010.
- 2. Labview: Basics I & II Manual, National Instruments, 2005.

Head of the Department
Department of Electronics
Hindusthan College of Arts & Science
Coimbatore-641 028

Page 25 of 27

Code No	Subject	Semester No
16ELP21	ELECTIVE PRACTICAL:	IV
	(A) NETWORKING LABORATORY	

- 1. Inside a PC and a MAC.
- Installing O.S for hardware and basic software for networking.
- 3. Connecting different storage media to Computers and their usage.
- 4. Study of basic recording of sound using a P.C and Microphones.
- 5. Networking of Computers and trouble shooting
- 6. Working on Protocols.
- 7. Study of DOS and Windows commands.
- 8. Implementation of Error Detection / Error Correction Techniques.
- 9. Implementation of Stop and Wait Protocol and sliding window.
- 10. Implementation and study of Goback-N and selective repeat protocols.
- 11. Implementation of High Level Data Link Control.
- 12. Study of Socket Programming and Client Server model.
- 13. Write a socket Program for Echo/Ping/Talk commands.
- 14. To create scenario and study the performance of network with CSMA / CA protocol land compare with CSMA/CD protocols.
- 15. Network Topology Star, Bus, Ring.

Head of the Department
Department of Electronics
Hindusthan College of Arts & Science
Coimbatore-641 028

Page 26 of 27

Code No	Subject	Semester No
16ELP21	ELECTIVE PRACTICAL:	IV
	(B) VIRTUAL INSTRUMENTATION	1 - 4

(Using Lab VIEW)

- 1. Creating a simple VI to place a Digital Control
- 2. VI to make a Degree C to Degree F Converter
- 3. Converting VI in to Sub VI
- 4. To count Modulus 32 and display the values in decimal, octal and binary.
- Built a VI using while loop that displays random numbers in to three wave form charts.
 (Strip, scope & Sweep)
- 6. Application using Formula Node
- 7. Median Filter
- 8. Discrete Cosine Transform
- 9. Convolution of Two Signals
- 10. Windowing Technique
- 11. Instrumentation Amplifier to Acquire an ECG Signal
- 12. Acquire, Analyse and Present an EEG using Virtual Instrumentation
- 13. Development of Temperature Measurement
- 14. Development of Virtual Instrument for Function Generator
- 15. Development of Virtual Instrument for Audio Signal Spectrum Analyzer

Head of the Department
Department of Electronics
Hindusthan College of Arts & Science
Coimbatore-641 028

Page 27 of 27