LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK (LOCF)

in the
POSTGRADUATE PROGRAMME IN MATHEMATICS

FOR THE STUDENTS ADMITTED FROM THE ACADEMIC YEAR 2021-2022 AND ONWARDS

HINDUSTHAN COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)
(Affiliated to Bharathiar University and Accredited by NAAC)
COIMBATORE-641028
TAMILNADU, INDIA.
Phone: 0422-4440555
Website: www.hicas.ac.in

PREAMBLE

The M.Sc., Mathematics programme is expected to be highly beneficial to the student community and to flourish strong-minded graduates with high level of analytic and technical skills required for the program. Moreover this program will furnish them with the necessary background for further study in Mathematics and enhance their research capabilities. Also it enables them to function effectively as teachers by giving student development programmes in the related subjects. Hence the curriculum is designed to assist the students in understanding the vital concept of Algebra, Differential Equations, Complex Analysis, Topology as well as Mathematical Softwares. At the end of the program, the student will gain in-depth knowledge in Mathematics subjects and play an active role in Mathematician research, government or nongovernment organization and private sectors.

VISION

To center stage Mathematical knowledge in the curriculum; instill analytical and logical thinking among students and promote Mathematical thought as an important area of human thought.

We envision world with flexible problem solving global leaders dedicated to conscientiously increase the understanding of Mathematics.

MISSION

The mission of the M.Sc., Mathematics programme is to provide an environment where students can learn and become competent users of mathematics and mathematical application.

The M.Sc., Mathematics programme will contribute to the development of students as mathematical thinkers, enabling them to become lifelong learners, to continue, to grow in their chosen professions and to function as productive citizens.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

PEO 1: Provide a strong foundation in different areas of Mathematics, so that the students can compete with their contemporaries and excel in the various careers in Mathematics.

PEO 2: Have the calibre to work in foreign Universities and Shine in higher level of administration like IAS, IPS, Officers in Nationalized Banks, LIC, etc,.

PEO 3: Motivate and prepare the students to pursue higher studies and research in Mathematics and Interdisciplinary Sciences, thus contributing to the ever-increasing academic demands of the country.

PEO 4: Enrich the students with strong communication and interpersonal skills, broad knowledge and an understanding of multicultural and global perspectives, to work effectively in multidisciplinary teams, both as leaders and team members.

PEO 5: To learn to apply mathematics to real life situations and to communicate mathematical ideas with clarity and able to identify, formulate and solve mathematical problems.

PROGRAMME OUTCOME (PO)

PO1: DISCIPLINARY KNOWLEDGE: Demonstrate in-depth knowledge of Mathematics, both in theory and application.

PO2: PROBLEM SOLVING AND ANALYSING: Identify, formulate, and analyze the complex problems using the Principles of Mathematics

PO3: ENVIRONMENT SUSTAINABILITY AND ETHICS: Equips students with advanced knowledge and insight in mathematics.

PO4: MODERN TOOL USAGE: Solve critical problems by applying the Mathematical Software Tools.

PO5: CO-OPERATIVE TEAM WORK \& COMMUNICATIVE SKILLS: Work individually or as a team member or leader in uniform and multidisciplinary settings.

PO6: SELF DIRECTED / LIFE LONG LEARNING: Enhances professional skills in Mathematics and some specialized areas of applied mathematics.

PO7: ENHANCING RESEARCH CULTURE: Apply the Mathematical concepts, in all the fields of learning including higher research, and recognize the need and prepare for lifelong learning.

PROGRAMME SPECIFIC OUTCOME (PSO)

PSO1: Communicate concepts of Mathematics and its applications.
PSO2: Acquire analytical and logical thinking through various mathematical tools and techniques.

PSO3: Investigate real life problems and learn to solve them through formulating mathematical models.

PSO4: Attain in-depth knowledge to pursue higher studies and ability to conduct research. Work as mathematical professional.

PSO5: Achieve targets of successfully clearing various examinations/interviews for placements in teaching, banks, industries and various other organizations/services.

HINDUSTHAN COLLEGE OF ARTS \& SCIENCE (AUTONOMOUS), COIMBATORE-641028

SCHEME OF EXAMINATIONS - CBCS \& LOCF PATTERN
(For the Students admitted from the Academic year 2021-2022 and Onwards)
PG PROGRAMME
Programme: M.Sc
Branch: MATHEMATICS

Course Code	Course Type	Course Title	Credit points	$\begin{gathered} \hline \text { Lecture } \\ \text { Hours/ } \\ \text { Week } \end{gathered}$		$\begin{gathered} \hline \text { Exam } \\ \text { Duration } \\ \text { (hours) } \end{gathered}$	MAX. MARKS		
				Theory	Practical		I.E.	E.E	Total
		Semester - I							
21MAP01	DSC	Advanced Algebra with GEOGEBRA	4	5		3	40	60	100
21MAP02	DSC	Advanced Real Analysis	4	5		3	40	60	100
21MAP03	DSC	Ordinary Differential Equations with SCILAB	4	5		3	40	60	100
21MAP04	DSC	Numerical Methods	4	5		3	40	60	100
21MAP05	DSC	Mathematical Softwares -I	4	5		3	40	60	100
21MAP06	DSC	Practical I Mathematical Softwares - Lab I	2	-	4	3	50	50	100
21MAP07	SEC	Internship / Institutional Training / Mini- Project	2	-		3	100	-	100
21MAPE01	AEE	Open Elective - I	2	3		3	100		100
21MAPV01	ACC	VAC-I	1*	2		2	50	-	50 **
21MAPJ01	SEC	Aptitude / Placement Training	Grade*	2		2	50		50**
-	SEC	SDR - Student Development Record	Assessment will be done in the end of Third semester						
		Total	26	32	4		450	350	800
		Semester - II							
21MAP08	DSC	Advanced Complex Analysis with TABLEAU	4	5		3	40	60	100

21MAP09	DSC	Partial Differential Equations with SCILAB	4	5		3	40	60	100
21MAP10	DSC	Mechanics	4	5		3	40	60	100
21MAP11	DSC	Optimization Techniques	4	5		3	40	60	100
21MAP12	DSC	Mathematical Softwares -II	4	5		3	40	60	100
21MAP13	DSC	Practical II Mathematical Softwares -Lab II	2	-	4	3	50	50	100
21MAP14	SEC	Internship / Institutional Training / Mini- Project / Extension Activity	2	-		3	100	-	100
21MAPE02	AEE	Open Elective - II	2	3		3	100		100
21MAPV02	ACC	VAC-II	1*	2		2	50	-	50**
21MAPJ02	SEC	Online Courses	Grade*	-		-	-	-	C/NC
21MAPJ03	SEC	Aptitude / Placement Training	Grade*	2		2	50		50**
		Total	26	32	4		450	350	800
		Semester - III							
21MAP15	DSC	Topology	4	5		3	40	60	100
21MAP16	DSC	Advanced Topics in Fluid Dynamics	4	4		3	40	60	100
21MAP17	DSC	Probability theory and Mathematical statistics	4	5		3	40	60	100
21MAP18	DSC	C++ Programming (Theory)	4	5		3	40	60	100
21MAP19	DSE	$\begin{aligned} & \hline \text { Electives I / } \\ & \text { DSE-I } \\ & \hline \end{aligned}$	3	3		3	40	60	100
21MAP20	DSE	$\begin{aligned} & \text { Electives II/ } \\ & \text { DSE-II } \\ & \hline \end{aligned}$	3	3		3	40	60	100
21MAP21	DSC	Practical III GEOGEBRA, SCI LAB and TABLEAU	2	-	4	3	50	50	100
21MAP22	SEC	Internship / Institutional Training / Mini- Project/ Extension Activity	2	-		2	100	-	100
21MAPE03	AEE	Open Elective-III	2	3		3	100	-	100

21MAPV03	ACC	VAC-III	1^{*}	2		2	50	-	$50^{* *}$
21MAPJ04	SEC	Aptitude / Placement Training	Grade*	2		2	50		$50^{* *}$
21MAPJ05	SEC	Online Courses	Grade*	-		-	-	-	C/NC
21MAPJ06	SEC	SDR - Student Development Record	2^{*}	-	-	-	-	-	-
		Total	$\mathbf{2 8}$	$\mathbf{3 2}$	$\mathbf{4}$		$\mathbf{4 9 0}$	$\mathbf{4 1 0}$	$\mathbf{9 0 0}$
21MAP23	DSE	Semester - IV Electives III /DSE-III	3	5			40	60	100
21MAP24	DSE	Electives IV /DSE-IV	3	5			40	60	100
21MAP25	SEC	Self-Study Course	3	-	-		40	60	100
21MAP26	SEC	Project Work /Student Research	5	-			50	150	200
		Total	$\mathbf{1 4}$	$\mathbf{1 0}$			$\mathbf{1 7 0}$	$\mathbf{3 3 0}$	$\mathbf{5 0 0}$

- * Denotes Extra credits which are not added with total credits.
- ** Denotes Extra marks which are not added with total marks.
- VAC-Value Added Course (Extra Credit Courses)
- * Grades depends on the marks obtained

Range of marks	Equivalent remarks
80 and above	Exemplary
$70-79$	Very good
$60-69$	Good
$50-59$	Satisfactory
Below 50	Not Satisfactory $=$ Not completed

- Part IV \& V not included in total marks and CGPA calculation.
- I.E-Internal Exam
- E.E-External Exam
- JOC-Job Oriented Course

PASSING MINIMUM

Passing Minimum for PG 50\%

Abstract for Scheme of Examination

(For the students admitted during the academic year 2021-2022 and onwards)

Course	Papers	Credit	Total Credits	Marks	Total Marks
Core /DSC	14			100	1400
Self-Study Course / DSC	1	3			100
Electives/DSE	4			100	400
Practical/DSC	3			100	300
Project / SEC	1	5	5	200	200
Internship/Institutional Training/Mini-Project / Extension Activity	3	2	6	100	300
Open Electives / AEE	3	2	6	100	300
Value Added Course	3	1*	3*	100	300**
Aptitude / Placement Training/ SEC	3	Grade*	Grade*	100	300**
Online Courses/ SEC	2	Grade*	Grade*	-	-
SDR - SEC	1	2*	-	-	-
Total			$94+$ (5 Extra Credits)		$\begin{aligned} & 3000+ \\ & \left(600^{* *}\right) \end{aligned}$

List of Open Elective Papers	
	Yoga for Human Excellence Human Health \& Hygiene Indian Culture and Heritage Indian Constitution and Political System Consumer Awareness and Protection Professional Ethics and Human Values Electives Disanan Rights, Women's Rights\& Gender Equality Management Green Farming Corporate Relations start a Business? Research Methodology and IPR General Studies for Competitive Examinations IIT JAM Examination (for Science only) CUCET Examination
VAC Papers	Courses offered by the Departments to other Programmes

Note: VAC / JOC courses can be added along with the above open electives

List of Elective Papers/ DSE

Syllabus Coordinator
Nahadaral Academic Council - Member Secretary

Coordinator
Academic Audit Cell Hindusthan College of Arts \& Science, Coimbatore -641 028.

BOS-Chairman/Chairperson

PRINCIPAL
Hindustan College of fits and Science Hindusthan Gardens, Behind Neva india, Coimbatore -641023.

PG/MCA Scheme of Evaluation (Internal \& External Components)

(For the students admitted during the academic year 2021-2022 and onwards)

1. Internal Marks

Components	Marks
Test	10
Model Exam	10
Internal Assessment components	20 \#
TOTAL	$\mathbf{4 0}$

2. a) Components for Practical I.E.

Components	Marks
Test -I	20
Test - II	20
Application*	10
Total	$\mathbf{5 0}$

\# List of components for Internal Assessment

S.No	Components
1	Multiple choice questions
2	Quiz
3	Video teach
4	UT - Unannounced test
5	Co-operative or Collaborative Learning
6	Mini Project/Assignment
7	Case study
8	Seminar

(Any four components from the above list with five marks each will be calculated $.4 \times 5=20$ marks)
b) Components for Practical E.E.

Components	Marks
Experiments	40
Record	5
Viva	5
Total	$\mathbf{5 0}$

3. Institutional/ Industrial Training, Mini Project and Major Project Work

Internships/Industrial Training (I.E)		Major Project Work		
Component	Marks	Component	Marks	Total Marks
Work diary	25	I.E a)Attendance	20	
Report	50	b)Review	30	50
Viva-voce	25			
		E.E* a) Final report	120	
Total	100	b)Viva-voce	30	150
			Total	200

*Evaluation of report and conduct of viva voce will be done jointly by Internal and External Examiners
4. Value Added Courses / Aptitude/Placement courses:

Components	Marks
Two Test (each 1 hour) of 25 marks each QP is objective pattern (25x1=25)	50
Total	$\mathbf{5 0}$

5. Guidelines for Open Elective

No of Activities	Marks
Two Tests (each 3 hours) of 50 marks each [5 out of 8 descriptive type questions $5 \times 10=50$ Marks]	100

Guidelines:

1. The passing minimum for these items should be 50%
2. If the candidate fails to secure 50% passing minimum, he / she may have to reappear for the same in the Subsequent semesters
3. Item No's: 4 is to be treated as 100% Internals and evaluation through online.
4. Item No.2: * - Application should be from the relevant practical subject other than the listed programmes It must be enclosed in the practical record.

Reg.No:-
 Q.P.CODE:

HINDUSTHAN COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)
PG/MBA/MCA DEGREE CIA EXAMINATIONS 20 \qquad
(----------Semester)
BRANCH: \qquad
Time: Two Hours
Subject Name: Maximum: 50 Marks
Section-A ($\mathbf{3 x 4} \mathbf{4}=\mathbf{1 2}$ Marks)
Answer ALL Questions
ALL questions carry EQUAL Marks
(Q.No: 1 to 3 Either Or type)

Section-B ($2 \times 12=24$ Marks)
Answer any TWO Questions out of THREE Questions
ALL questions carry EQUAL Marks
(Q.No: 4 to 6)

Section-C ($\mathbf{1 \times 1 4 = 1 4}$ Marks)
(Compulsory Question: It should be a Case study/Application oriented/Critical analysis from any of the units)
(Q.No: 7)

QUESTION PAPER PATTERN FOR MODEL / END SEMESTER EXAM

Reg.No: \qquad Q.P.CODE:

HINDUSTHAN COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)
PG/MBA/MCA DEGREE MODEL EXAMINATIONS

(----------Semester)
BRANCH: \qquad
Subject Name: \qquad
Time: Three Hours

SECTION - A ($\mathbf{5 \times 4 = 2 0} \mathbf{~ m a r k s}$)

Answer ALL Questions
ALL Questions carry EQUAL Marks
(Q.No 1 to 5 Either Or type)
(One question from each Unit)

SECTION - B ($\mathbf{3 x 1 0}=\mathbf{3 0}$ Marks)
Answer any THREE Questions Out of FIVE Questions
ALL Questions carry EQUAL Marks
(Q.No 6 to 10)
(One question from each Unit)

SECTION - C ($\mathbf{1 \times 1 0 = 1 0 M a r k s) ~}$
(Compulsory Question: It should be a Case study/Application oriented/Critical analysis from any of the units)
(Q.No: 11)

Course Code:	21MAP01	Course Title					Batch:2021-2022 and Onwards		
		ADVANCED ALGEBRA WITH GEOGEBRA						Semester:	
		L	$\mathbf{5}$	T	-	P		-	Credits:

COURSE OBJECTIVE:

1. To provide deep knowledge about Groups.
2. To obtain the Knowledge in Ring theory and its applications
3. To acquire the knowledge in the field of polynomial roots
4. To introduce Galois Theory and to see its application to the solvability of polynomial equations by radicals
5. To able to understand the transformation.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO1	Understand Sylows theorem and evaluate its applications	K2 \& K5
CO2	Determine some special types of rings and their properties	K5
CO3	Classify the extension fields and determine the roots of polynomials.	K4 \& K5
CO4	Analyze the elements of Galois theory and Galois Groups over the rational and estimate the straight edges	K4 \&K5
CO5	Apply the transformation, nilpotent transformation and explain Jordan forms	K3 \& K5
K1- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate		

```
SYLLABUS
```

21MAP01	ADVANCED ALGEBRA WITH GEOGEBRA	Sem: I
Unit No.	Topics	Hours
I	Group Theory: Another counting principle - Sub group-Cauchy theorem -Sylow's theorem - Second proof of Sylow's theorem-Third proof of Sylow's theorem- Double Coset-Direct products: External and Internal direct Products-Application: Sylow's theorem- Permutation groups.	$\mathbf{1 3}$
II	Ring Theory: The field of quotients of an integral domain-Euclidean rings-A particular Euclidean ring - Polynomial rings - Polynomials over the rational field- Applications: Network security-Cryptography.	$\mathbf{1 3}$
III	Fields: Extension Fields - The Transcendence of e-Roots of polynomials -Construction with straight edge and compass - More about roots-Applications: Particle physics	$\mathbf{1 3}$
IV	Fields: The elements of Galois theory - Fixed Field-Solvability by Radicals-- Finite Fields-Applications: Image processing.	$\mathbf{1 3}$
V	Linear Transformations: Canonical forms: Triangular form - Nilpotent transformations- Jordan form - Hermitian and Unitary Transformations-Applications : Computer graphics.	$\mathbf{1 3}$

Note: Distribution of marks: Problems 20\%, Theory 80\%
Teaching Methods: Power Point Projection through LCD, Assignment, Discussion and Activity.

TEXT BOOK

1. I.N.Herstein, "Topics in Algebra "(II Edition), Published June 20th 1975 by Wiley

Unit I: Chapter 2: (Sections 2.11-2.13)
Unit II: Chapter 3: (Sections 3.6-3.10)
Unit III: Chapter 5: (Sections 5.1-5.5)
Unit IV: Chapter 5: (Sections 5.6-5.7) Chapter 7: (Sections 7.1)
Unit V: Chapter 6: (Sections 6.4, 6.5,6.6 and 6.10)

REFERENCE BOOKS

1. J.B.Fraleigh, "A First Course in Abstract Algebra", Narosa Publishing House, New Delhi, 1988.

Web Link:

1. Topics_in_algebra_second_edition_herstein.pdf
2. https://www.geogebra.org/materials

Application Link:

Unit I : https://www.youtube.com/watch?v=NbNxmYziDts
Unit II : https://www.youtube.com/watch?v=Q-HugPvA7GQ\&list=PL71FE85723FD414D7
Unit III: https://www.youtube.com/watch?v=NOMUnMuxDZY
Unit IV: https://www.youtube.com/watch?v=AkPoz5IeK9M
Unit V : https://www.youtube.com/watch?v=Zs3XJK_OSMU

MAPPING WITH PROGRAM OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	S	S	S	M
CO2	S	M	S	M	S	S	M
$\mathbf{C O 3}$	S	S	S	S	S	S	M
$\mathbf{C O 4}$	S	S	S	S	S	M	M
CO5	S	S	S	S	S	M	S

S-Strong, M- Medium, L - Low

ASSESSMENT PATTERN (if deviation from common pattern)

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
Dr. S. ANURADHA, M.Sc.,M.B.A.,M.Phil.,PGDCA.,Ph.D., Proiessor \& Head, Co-ordinator PG \& Research Dept. of Mathematics, Hindustnan Collnge of Arts \& Science, Curriculum Devclopment Cell Coimbatore - 641028 Hindusthan College of Arts E: Scier Coimbatore-641 028.		

Course Code:	21MAP02 Course Title	Batch:	2021-2022 and Onwards						
		ADVANCED REAL ANALYSIS						Semester:	I
Hrs/Week:		L	$\mathbf{5}$	T	-	P	-	Credits:	

COURSE OBJECTIVE:

1. To evaluate integral of a function of a real variable in the sense of Riemann Stieltjes integral and gain its properties.
2. To acquire Knowledge and demonstrate understanding the statement and proof of convergence theorems and its applications.
3. To obtain the knowledge about linear transformation.
4. To understand the requirement and concept of Lebesgue measure, Measurable functions and Lebesgue integral.
5. To evaluate advanced the Lebesgue measure and Lebesgue integral with related problems.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO1	Apply the Riemann Stieltjes integral of real valued functions on intervals and its properties and evaluate vector valued function	K3 \& K5
CO 2	Classify and determine the sequences and series along with its properties.	$\mathrm{K} 2 \& \mathrm{~K} 5$
CO 3	Analyze the concept of linear transformation and explain the extreme values of implicit functions.	$\mathrm{K} 4 \& \mathrm{~K} 5$
CO 4	Understand the fundamental concept of Lebesgue measure and evaluate the applications	$\mathrm{K} 2 \& \mathrm{~K} 5$
CO5	Evaluate the complex integration and the benefits of Lebesgue Integral K1- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate	

SYLLABUS

21MAP02	ADVANCED REAL ANALYSIS	Sem: I
Unit No.	Topics	Hours
I	Riemann Stieltjes Integral Definition and Existence of the Integral - Properties of the integral - Integration and differentiation - Integration of vector valued function - rectifiable curves-Applications: Calculate the area, Distance travelled by some object.	13
II	Sequences and Series of Functions Uniform convergence and continuity - Uniform convergence and integration -Uniform convergence and differentiation - Equicontinuous families of functions - The Stone-Weierstrass theorem-Application: Calculating the continuous function	13
III	Functions of Several Variables Linear transformation - contraction principle - Inverse function theorem - Implicit function theorem-Applications: Computer graphics- Matrix exploring	13
IV	Lebesgue Measure Outer measure - Measurable sets and Lebesgue measure - Measurable functions -Littlewood's Theorem-Application: Calculating the Outer measure.	13
Questions related to Applications included in internal only and excluded in semester questions.		
	Lebesgue Integral The Lebesgue integral of bounded functions over a set of finite measure - integral of a non - negative function - General Lebesgue Integral- Application: Apply to integrals.	13

Note: Distribution of marks: Problems 20 \%, Theory 80%
Teaching methods: PowerPoint Projection through LCD, Assignment, Discussion and Activity.

TEXT BOOKS

1.WalterRudin, "Principles of Mathematical Analysis", McGraw Hill New York, 1976.

Unit I \& II: Chapter 6 \& 7.
Unit III: Chapter 9 (Pages 204 to 227)
2. H.L. Royden, "Real Analysis ", Third Edition, Macmillan New York, 1988.

Unit IV: Chapter 3 (except Section - 4)
Unit V: Chapter 4 (Sections 2, 3 \& 4 only)

REFERENCE BOOKS

1.R.G.Bartle, "Elements of Real Analysis", $2^{\text {nd }}$ Edition, John Wily and Sons, New York, 1976.
2.W.Rudin, "Real and Complex Analysis", $3^{\text {rd }}$ Edition, McGraw-Hill, New York, 1986.

WEB RESOURCES

Web Link: https://ufsj.edu.br/portal-repositorio/File/nepomuceno/slides(2).pdf

http://sv.20file.org/up1/1399_0.pdf

Application Link:
Unit I: https://www.youtube.com/watch?v=hNOnzg-TcVs
Unit II: https://www.youtube.com/watch?v=ckZpIsjzm0I
Unit III : https://www.youtube.com/watch?v=dv4cjQZrRp8\&t=1223s
Unit IV: https://www.youtube.com/watch?v=lgZJohjjs10\&list=PLgMDNELGJ1CYKDzKdGcM1-kuH_alNCfQA
Unit V: https://www.youtube.com/watch?v=pX70A6ntauE

MAPPING WITH PROGRAM OUTCOMES

$\mathbf{C O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	M	S	M	M	
CO2	S	S	S	M	M	M	S
CO3	S	S	S	S	S	S	M
CO4	M	S	S	S	M	S	S
$\mathbf{C O 5}$	M	S	S	M	M	M	S

S-Strong, M- Medium, L-Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
	Dr.S.Anuradha Name \& Signature	

Dr. S. ANURADHA,
M.Sc., MA B.A.M.Phu., PGDCA.,Ph.D.

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Sciance, Coimbatore-641028

Curriculum Development Ce! Hindusthan College of Arts \& Scie Coimbatore-641 028.

COURSE OBJECTIVE:

1. To study solutions of linear differential equations with constant and variable coefficients.
2. To understand and able to apply various theoretical ideas that underlined in existence and uniqueness theorems.
3. To enables the students to develop the strong background in Linear independence and dependence, Wronskian etc.,
4. To acquire the knowledge in Euler equations, the Bessel's equation.
5. To identify the research problems.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO1	Describe the mathematical methods to solve higher order differential equations and determine the equations.	K2 \& K5
CO2	Analyze and evaluate non-homogeneous ODE using the method of undermined coefficients and annihilator method	K2 \&K5
CO3	Understand, Apply and determine the theorems on Initial value problem to ordinary differential equations.	K2, K3\&K5
CO4	Compare the Euler equations, the Bessel's equation and Regular, singular points at infinity and to evaluate	K5
CO5	Categorize and estimate the research problem where differential equation can be used to model the problem.	K4 \& K5
K1- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate		

SYLLABUS

21MAP03	ORDINARY DIFFERENTIAL EQUATIONS WITH SCILAB	Sem: I
Unit No.	Topics	Hours
I	Linear Equations with Constant Coefficients Introduction - Second order homogenous equations - Initial value problem for second order equations - Linear dependence and independence - A formula for Wronskian.	$\mathbf{1 3}$
II	Linear Equations with Constant Coefficients (Contd.) The Non- homogenous equations of order two-homogenous and Non - homogenous equations of order n - Initial value problems for n equations- Annihilator method to solve non- Homogenous equation- Applications: Transformation between two images.	$\mathbf{1 3}$
III	Linear Equations with Variable Coefficients Initial value problem - Existence and uniqueness theorem - The Wronskian and linear independence - Reduction of the order of a homogenous equation - The non- Homogenous equation - Homogenous equations with analytic coefficients - The Legendre equations- Applications: Solving Mechanical system of equations.	$\mathbf{1 3}$
IV	Linear Equations with Regular Singular Points The Euler equations - Second order equations with regular singular points - Exceptional cases - The Bessel equation - The Bessel equation (contd.)- Applications: Derivative and concepts in Economics.	$\mathbf{1 3}$
V	Existence and Uniqueness of Solutions to First Order Equations Equations with variable separated - Exact equations - The method of successive approximation - The Lipschitz Condition - Convergence of the successive approximation - Non-local existence of solutions - Approximations and uniqueness of solutions-Applications: Simple harmonic motion in spring mass system.	$\mathbf{1 3}$

Note: Distribution of marks: Problems 80%, Theory 20%
Teaching methods: PowerPoint Projection through LCD, Assignment, Discussion and Activity.

TEXT BOOK

Earl A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice-Hall of India Private Limited, New Delhi2008.

UNIT I:	Chapter2	: Sections 2.1-2.5.
UNIT II:	Chapter2	: Sections 2.6-2.8,2.10,2.11.
UNIT III:	Chapter3	: Sections 3.1-3.8
UNIT IV:	Chapter4	: Sections 4.1-4.4, 4.6-4.8
UNIT V:	Chapter5	: Sections 5.1-5.8

REFERENCE BOOKS

1.D.A.Sanchez, "Ordinary Differential Equations and Stability Theory", W.H.Freeman \& Co., San Francisco.
2.Williams E. Boyce and Richard C. Diprima, "Elementary Differential Equations and Boundary Value Problems", 10th edition, John Wiley and Sons, New York 2012.

WEB RESOURCES

Web Link: https://ptvtpqa.files.wordpress.com/2013/12/coddington-e-levinson-n-theory-of-ordinary-differential-equations.pdf
https://books.google.co.in/books?id=uzymjXGIhxsC\&printsec=frontcover \&source=gbs_ge_summary_r \& cad $=0 \# v=$ onepage $\& q \& f=$ false

ApplicationsLink:

Unit II : https://www.youtube.com/watch?v=K-j704F6F7Q
Unit III : https://www.youtube.com/watch?v=blspnBv50ts
Unit IV : https://www.youtube.com/watch?v=QRPa-twGsUk
Unit V : https://www.youtube.com/watch?v=zI0Qgq5x1ok

MAPPING WITH PROGRAM OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	S	M	M	S
CO2	S	S	S	S	M	S	S
CO3	S	S	M	S	S	S	S
CO4	S	S	S	M	M	M	S
CO5	M	S	S	M	M	M	S

S-Strong, M- Medium, L-Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
	Dr.S.Anuradha Name \& Signature	

Dr. S. ANURADHA,
M.Sc., MA B.A.M.Phu., PGDCA.,Ph.D.

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Sciance, Coimbatore-641028

Curriculum Development Ce! Hindusthan College of Arts \& Scie Coimbatore-641 028.

Course Code:	21MAP04	Course Title						Batch:	$\begin{array}{\|c} \hline \text { 2021-2022 } \\ \text { and } \\ \text { Onwards } \end{array}$
		NUMERICAL METHODS						Semester:	I
Hrs/Week:	5	L	5	T	-	P	-	Credits:	4

COURSE OBJECTIVE:

1. To make the students understand solving Algebraic and Transcendental equations.
2. To able to solve the system of equations.
3. To understand the methods of finding solution to the differential equations of various orders.
4. To apply the methods for solving Partial differential equations.
5. To solve characteristics value problems.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO1	Explain and evaluate the various tools in solving numerical problems.	K2\& K5
CO 2	Identify and determine the system of equations using various methods.	K3 \& K5
CO3	Apply and evaluate various methods to find numerical solution of first and second order ordinary differential equations.	K3 \& K5
CO4	Understand \& determine the Explicit method and the Crank Nicolson method for solving partial differential equations.	K2 \& K5
CO5	Classify and estimate the various methods for solving Characteristic Value Problems.	K4 \& K5
K1- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate		

21MAP04	NUMERICAL METHODS	Sem: I
Unit No.	Topics	Hours
	Solution of nonlinear equations: Initial approximation for an Iterative procedures- Regula Falsi method - Newton's method -Convergence of Newton's method. Numerical differentiation and integration: Derivatives from Differences tables -Higher order derivatives -Divided difference, Central - Difference formulas -Composite formula of Trapezoidal rule - Romberg integration- Simpson's rules-Applications: Calculating the areas, and solutions	$\mathbf{1 3}$
II	Solution of system of equations: Gauss Elimination method - Gauss Jordan methods -LU Decomposition method -Matrix inversion by Gauss-Jordan method - Methods of Iteration -Jacobi and Gauss Seidal Iteration -Applications : Traffic flow.	$\mathbf{1 3}$
III	Solution of ordinary differential equations: Taylor series method -Euler and Modified Euler methods -Rungekutta methods (4t order \& 6 ${ }^{\text {th }}$ order)-Milne's method - Adams Moulton method - Applications: Evaluations of integrals, limits and series.	$\mathbf{1 3}$
IV	Numerical solution of partial differential equations: Representation as a difference equation - Laplace's equation on a rectangular region - Iterative methods for Laplace equation - The Poisson equation - Derivative boundary conditions - Solving the equation for time - dependent heat flow (i) The Explicit method (ii) The Crank Nicolson method - Solving the wave equation by Finite Differences -Applications: Electro magneto field.	$\mathbf{1 3}$
Questions related to Applications included in internal only and excluded in semester questions.		

Note: Distribution of marks: Problems 80 \%, Theory 20 \%

Teaching methods: Power Point Projection through LCD, Assignment and Discussion and Activity.

TEXT BOOKS

For Units I to III :

1. Iyengar.S.R.K and Jain.R.K- "Numerical Methods", New Age International Publishers.

Unit I : Chapter1 : Sections : 1.1.2-1.1.4, 1.1.6, Chapter3 : Sections : 3.1, 3.2, 3.3.1, 3.3.2
Unit II : Chapter1 : Sections: 1.2.1-1.2.3,
Unit III : Chapter4 : Sections : 4.3, 4.4, 4.6

For Units IV\& V:
2. Kandasamy.P, Thilagavathi.K and Gunavathi.K- "Numerical methods", S. Chand and Company Ltd, New Delhi - Revised Edition 2007.

Unit IV : Chapter12 : Section : 12.1-12.10
Unit V: Chapter 13

REFERENCE BOOKS

\author{

1. S.C. Chapra and P.C. Raymond: "Numerical Methods for Engineers", Tata McGraw Hill, New Delhi,(2000)
 2. L. Burden and J. Douglas Faires: "Numerical Analysis", P.W.S.Kent Publishing Company, Boston (1989), FourthEdition.
}

WEB RESOURCES

Web Link:
https://www.academia.edu/8565134/Numerical Methods For Scientific And Engineering Computation M K Jain_S_R_K_Iyengar_And_R_K_Jain?auto=download
https://www.abebooks.com/servlet/BookDetailsPL?bi=30715571896\&searchurl=an\%3Dgunavathi\%2B k\%2Bkandasamy\%2Bp\%2Bthilagavathi\%2Bk\%26sortby\%3D17\&cm_sp=snippet_-_srp1-_-title2
https://fac.ksu.edu.sa/sites/default/files/numerical_analysis_9th.pdf

Application Link:

Unit I: https://www.youtube.com/watch?v=boHowdyT-Bc
Unit II : https://www.youtube.com/watch?v=Wa6kaCwyYRk\&t=216s
Unit III : https://www.youtube.com/watch?v=EYjBnnUJTP8
Unit IV : https://www.youtube.com/watch?v=OiLhX_OBhm8
Unit V: https://www.youtube.com/watch?v=B7KkaTwiSPs

MAPPING WITII PROGRAM OUTCOMES

	PO1	PO2	PO3	PO4	P05	PO6	PO7
CO1	S	S	S	S	M	M	M
CO2	S	S	S	M	S	M	M
CO3	S	S	M	S	M	M	M
CO4	S	S	S	S	S	S	M
CO5	S	S	M	S	M	S	M

S-Strong, M-Medium, L-Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
AnOsA Dr.M.Rajarajeswari Name \& Signature of the Staff		

Dr. S. ANURADHA,
M.Sc.,M.B.A.,M.Phil.,PGDCA.,Ph.D.,

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Science, Coimbatore - 641028

Course Code:	21MAP05	Course Title						Batch:	$\begin{aligned} & \hline \text { 2021-2022 } \\ & \text { and } \\ & \text { Onwards } \end{aligned}$
		MATHEMATICAL SOFTWARES - I						Semester:	I
Hrs/Week:	5	L	5	T	-	P	-	Credits:	4

COURSE OBJECTIVE:

1. To obtain the knowledge about the foundations of LATEX
2. To create mathematical models and problems in LATEX.
3. To acquire the knowledge about variables, Matrices, vectors and array.
4. To able to model the mathematical program in MATLAB.
5. To solve various linear and nonlinear algebraic equations.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO1	Illustrate the foundations of LATEX and determine the programming in MATLAB.	K2 \& K5
CO2	Construct and explain mathematical Modeling in MATLAB.	K3\& K5
CO3	Understand, apply and explained the concepts of Variables, arrays, conditional statements, loops, functions, and plots .	K2, K3 \&K5
CO4	Determine the program in MATLAB	K5
CO5	Classify and evaluate ordinary differential equations using MATLAB.	K2 , K4 \& K5
K1- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate		

SYLLABUS

21MAP05	MATHEMATICAL SOFTWARES - I	Sem: I
Unit No.	Topics	Hours
I	Basics of a Latex file: Special Characters, Document layout and organization: Document class, Page style, Parts of the document. Displayed Text: Centering and indenting, Lists Theorem-like declarations, Boxes, Tables, Footnotes and marginal notes. Applications: Communication and publication of scientific document	$\mathbf{1 3}$
II	Mathematical formulas: Mathematical environments, Main elements of math mode, Mathematical symbols, Additional elements, Fine-tuning mathematics-- The Graphics packages -Applications: Writing the research papers professionally	$\mathbf{1 3}$
III	Basics of MATLAB: MATLAB Windows, Online help. Interactive Computation: Matrices and Vectors-Matrix and Array Operations-Inline functions - using Built-in Functions and on -line help-saving and loading data-plotting simple graphs-Applications: Programming for numerical computation	$\mathbf{1 3}$
IV	Programming in MATLAB: Script files - Functions and function files- Loops- Language specific Features-Advanced data objects-Applications: Mathematical modelling	$\mathbf{1 3}$
Linear and Nonlinear Algebra: Linear Algebra - Data Analysis and Statistics - Ordinary Differential Equations-Nonlinear Algebraic Equations - Basic 2D and 3D Plots (Syntax only)-Applications: Solving word problems involving relationships	$\mathbf{1 3}$	
Vuestions related to Applications included in internal only and excluded in semester questions.		

Note: Distribution of marks: Problems 20%, Theory 80%

Teaching methods: PowerPoint Projection through LCD, Assignment and Discussion and Activity.

TEXT BOOKS

For Units I and II

1. H. Kopka and P.W. Daly, "A Guide to LATEX", Third Edition, Addison - Wesley, London,1999.

Unit I : Chapter2: Section : 2.5 ,Chapter 3 : Sections : 3.1-3.3,
Chapter 4 : Sections : 4.2,4.3,4.5,4.7,4.8,4.10
Unit II: Chapter 5: Sections : 5.1-5.5,Chapter 6:Section : 6.1

For Units III, IV and V

2.RudraPratap, "Getting Started with MATLAB" Indian Edition, Oxford University Press Unit III : Chapter 1 : Sections: 1.6.1, 1.6.2, Chapter 3 : Sections : 3.1, 3.2,3.5.1,3.6-3.8
Unit IV : Chapter 4 : Sections : 4.1-4.4
Unit V : Chapter 5 : Sections :5.1, 5.3,5.5,5.6, Chapter 6 : Sections : 6.1, 6.3

REFERENCE BOOKS

1. A. Gilat, John Wiley \& Sons "MATLAB An Introduction with Application",Singapore, 2004.
2. W.J. Palm Introduction to MATLAB 7 for Engineers" McGraw-Hill Education, New York, 2005.

WEB RESOURCES

WebLink: https://www.maths.ox.ac.uk/system/files/legacy/2875/TexLaTeX_Intro2012MT-Ver2_1.pdf https://lpuguidecom.files.wordpress.com/2017/05/p1-11385-scripts-and-matrix-operations.pdf

Applications Link:

Unit I: https://www.youtube.com/watch?v=0ivLZh9xK1Q
Unit II: https://www.youtube.com/watch?v=teBZ21ar-yU
Unit III: https://www.youtube.com/watch?v=O41BWhXFu8E
Unit IV: https://www.youtube.com/watch?v=BxbBfChcThQ
Unit V: https://www.youtube.com/watch?v=F7YzS59h1r4

MAPPING WITH PROGRAM OUTCOMES

$\underbrace{\text { PO }}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	S	S	M	S
CO2	S	S	S	S	M	S	M
CO3	S	S	S	S	S	S	M
CO4	M	S	S	M	M	M	S
CO5	S	M	S	M	M	S	M

S-Strong, M- Medium, L-Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
	Dr.S.Anuradha Name \& Signature	

Dr. S. ANURADHA,
M.Sc., MA B.A.M.Phu., PGDCA.,Ph.D.

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Sciance, Coimbatore-641028

Curriculum Development Ce! Hindusthan College of Arts \& Scie Coimbatore-641 028.

Course Code:	Course Title	21MAP06				Batch:	2021-2022 and Onwards
		PRACTICAL I : MATHEMATICAL SOFTWARES - I					
		L	-	T	-	Pemester:	I

COURSE OBJECTIVE:

1.To gain the knowledge about basic concept of LATEX.
2. To able to apply curve fitting in LATEX
3. To perform various programs using MATLAB
4. To solve Mathematical equations in MATLAB.
5. To achieve Mathematical Modelling.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMSLEVEL
CO1	Understand the concept of LATEX and evaluate the program.	K2 \& K5
CO2	Determine various applications of MATLAB in curve fitting, statistics and integration.	K5
CO3	Analyze and Evaluate programs and plot results in MATLAB	K4\&K5
CO4	Identify and evaluate various types of equations	K3 \& K5
CO5	Build and determine mathematical Modeling in MATLAB.	K3 \& K5
KI- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate		

21MAP06	PRACTICAL I : MATHEMATICAL SOFTWARES LAB-I	Sem: I
Unit No.	Topics	Hours

LaTex and MATLAB - List of Practical Problems

1. Using LaTex, type the following paragraph, to including the 9.5 in text height, 6.30 in text width, 0.10 in left margin, 0.120 in right margin, -0.6 in top margin, 1.5 in line space and footnotes.
2. Using LaTex, type the following formula

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}}}}}+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\sum_{\alpha=0}^{\infty}\left(\beta^{\alpha}+\Gamma^{\alpha}\right)
$$

3. Using LaTex, draw the following diagram:

4. Create the following table using LaTex: S.No. Register Number Name of the Student Percentage of Marks Rank

S.No.	Register Number	Name of the Student	Percentage of Marks	Rank
1	xxxxxx	xxxxxx	xxxxx	xxxx
2	xxxxxx	xxxxxxx	xxxx	xxxx
3	xxxxxx	xxxxxx	xxxx	xxxxx

5. Plotting a function by using MATLAB,.
6. Polar plot by using MATLAB
7. Find the Addition of two matrices by using MATLAB,.
8. Find the determinant of a matrix by using MATLAB,.
9. Write the MATLAB program to generate Fibonacci series
10. Using MATLAB, Solve the following system of equations by matrix method $2 x+y=13, x-3 y=-18$.
11. Using MATLAB, solve the following first order linear differential equation using Euler method: $d y / d x=-y, y(0)=1$, Draw the graph and compare the exact solution.
12. Calculate mean, median, standard deviation, variance, maximum value, minimum value, range, skewness and kurtosis for the following data: 40414549505155

Note: IE 50 Marks and EE 50 Marks

Teaching methods: PowerPoint Projection through LCD, Discussion and Activity.

WEB RESOURCES

WebLink:

hittos://www.maths.ox:ac.uk/system/files/legacy/2875/TexLaTeX_Intro2012MT-Ver2_1.pdf

MAPPING WITH PROGRAM OUTCOMES

$\mathrm{CO}^{\mathrm{PO}}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7
$\mathrm{CO1}$	S	S	S	S	S	M	S
CO2	S	S	S	S	S	S	M
CO3	S	S	S	S	M	S	M
CO 4	M	S	S	M	S	M	S
CO5	S	M	M	S	M	S	M

S-Strong, M-Medium, L-Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Code:	21MAP08	Course Title						Batch:	2021-2022 and Onwards
Hrs/Week:	5	ADVANCED COMPLEX ANALYSIS WITH TABLEAU						Semester:	II
		L	5	T	-	P	-	Credits:	4

COURSE OBJECTIVE:

1. To define and recognize the basic properties of the complex numbers
2. To study Cauchy's integral formula, local properties of analytic functions
3. To understand the concept of residues.
4. To study the Taylor and Laurent series and apply to the problems.
5. To enable to understand conformal mapping and study The Schwarz-Christoffel Formula.

COURSE OUTCOMES (CO)

S. No	COURSE OUTCOME	BLOOMSLEVEL
CO1	Understand and explain fundamental theorems used in complex analysis.	K2 \& K5
CO2	Apply the Cauchy's integral formula in residue theorems and explanation of definite integrals.	K3\& K5
CO3	Compare the concept of residues with Poisson's formula and formulate the problems	K4 \&K5
CO4	Examine and determine the Taylor series, Laurent series and elliptic functions.	K4 \& K5
CO5	Analyze, apply and evaluate conformal mapping.	K4, K3 \&K5
K1- Remember, K2- Understand, K3-Apply, K4-Analyze, K5- Evaluate		

21MAP08	ADVANCED COMPLEX ANALYSIS WITH TABLEAU	Sem: II
Unit No.	Topics	Hours
I	Introduction to the concept of analytic function: Limits and continuity -Analytic functions, Polynomials - Rational functions- Conformality: Arcs and closed curves -Analytic functions in regions - Conformal Mapping -Length and Area. Linear Transformations: The Linear group - The Cross ratio - Elementary Riemann Surfaces-Applications : Physics Quantum applications.	13
II	Complex Integration: Line Integrals Rectifiable Arcs -Line Integrals as Functions of Arcs Cauchy's theorem for a rectangle -Cauchy's theorem in a disk, Cauchy's Integral formula: The Index of a point with respect to a closed curve The Integral formula - Higher derivatives - Removable singularityTaylor's Theorem -Zeros and Poles -The Local Mapping - The Maximum principle - chains and cycles-Applications: Derivative of Analytic function.	13
III	The Calculus of Residues: The Residue theorem -The Argument principle -Evaluation of definite integrals. Harmonic functions: The Definitions and basic Properties Mean value property -Poisson's Formula-Applications: Evaluate line integrals of analytic functions over closed curves.	13
IV	Series and Product Developments: Weierstrass Theorem-The Taylor Series The Laurent Series-Partial fractions and Factorization: Partial Fractions-Infinite Products Canonical products -Applications : Using to solve non analytic functions	13
V	The Riemann Mapping Theorem: The Riemann Mapping Theorem - Use of the reflection principle Analytic arcs-Conformal mapping of Polygons: The Behavior at an angle -The Schwarz-Christoffel Formula- Mapping on a rectangleApplications: Surface comparison in Medical field	13
TABLEAU Problems related to ADVANCED COMPLEX ANALYSIS have been included in Practical-III (21MAP21) and questions related to TABLEAU excluded in ADVANCED COMPLEX ANALYSIS (21MAP08) in the questions.		

Note: Distribution of marks: Problems 20 \%, Theory 80%

Teaching methods: PowerPoint Projection through LCD, Assignment and Discussion and Activity.

TEXT BOOK

1. V. Ahlfors, "Complex Analysis", McGraw Hill, New York, 1979.

Unit I : Chapter 2 : Sections : 1.1-1.4 Chapter 3 : Sections $2.1-2.4,3.1,3.2,3.4,4.3$
Unit II : Chapter 4 : Sections: 1.1-1.5,2.1-2.3,3.1-3.4, 4.1
Unit III : Chapter 4 : Sections : 5.1-5.3,6.1-6.3
Unit IV : Chapter 5 : Sections : 1.1-1.3,2.1-2.3
Unit V : Chapter 6 : Sections : 1.1,1.3,1.4,2.1-2.3

REFERENCE BOOKS

1.T.W.Gamelin, "Complex Analysis", Springer, New York, 2001.
2.Joseph Bak, Donald J Newman, " Complex Analysis", Springer, New York, 2010.

WEB RESOURCES

WebLink: http://people.math.gatech.edu/~mccuan/courses/6321/lars-ahlfors-complex-analysis-third-edition-mcgraw-hill-science_engineering_math-1979.pdf

Application Link:

Unit I: https://www.youtube.com/watch?v=0Won5Vs_65E
Unit II: https://www.youtube.com/watch?v=0jtWezz2ekE
Unit III: https://www.youtube.com/watch?v=hsBfQMEQb-A
Unit IV: https://www.youtube.com/watch?v=zFncaqiXgr4
Unit V: https://www.youtube.com/watch?v=gvCdXMU2SAI

MAPPING WITH PROGRAM OUTCOMES

$\mathbf{P O}$	$\mathbf{P O 1}$	$\mathbf{P O 2}$	$\mathbf{P O 3}$	$\mathbf{P O 4}$	PO5	PO6	PO7
$\mathbf{C O 1}$	S	S	S	S	S	M	M
$\mathbf{C O 2}$	S	S	S	M	S	M	M
$\mathbf{C O 3}$	S	S	M	S	M	M	S
$\mathbf{C O 4}$	S	S	S	M	S	S	S
$\mathbf{C O 5}$	S	S	M	S	M	S	S

S-Strong, M-Medium, L-Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
	Dr.S.Anuradha Name \& Signature	

Dr. S. ANURADHA,
M.Sc., MA B.A.M.Phu., PGDCA.,Ph.D.

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Sciance, Coimbatore-641028

Curriculum Development Ce! Hindusthan College of Arts \& Scie Coimbatore-641 028.

Course Code:	21MAP09	Course Title						Batch:	$\begin{aligned} & \hline \text { 2021-2022 } \\ & \text { and } \\ & \text { Onwards } \end{aligned}$
		PARTIAL DIFFERENTIAL EQUATIONS WITH SCILAB						Semester:	II
Hrs/Week:	5	L	5	T	-	P	-	Credits:	4

COURSE OBJECTIVE:

1. To introduce different methods to solve partial differential equation.
2. To acquire knowledge in classification of partial differential equations and the methods to solve.
3. To study and apply Laplace equations.
4. To solve wave equations.
5.To enables the students to find the solution of Green's function.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO 1	Understand various methods of Partial differential equations and determine different kinds of Partial differential equations.	$\mathrm{K} 2 \& \mathrm{~K} 5$
CO 2	Analyze and formulate the type of partial differential equations.	$\mathrm{K} 4 \& \mathrm{~K} 5$
CO 3	Evaluate Laplace equation and analyze its applications.	$\mathrm{K} 4 \& \mathrm{~K} 5$
CO 4	Apply and explain variable separable method to solve Laplace and Diffusion equation.	$\mathrm{K} 3 \& \mathrm{~K} 5$
CO 5	Examine appropriate method to solve and construct the diffusion equations.	$\mathrm{K} 4 \&$ K5
K1- Remember, K2- Understand, K3- Apply, K4-Analyze		K5- Evaluate

21MAP09	PARTIAL DIFFERENTIAL EQUATIONS WITH SCILAB	Sem: II
Unit No.	Topics	Hours
I	Partial Differential Equations of the First Order Partial Differential Equations - Origins of First Order Differential Equations - Cauchy's Problem for first order equations - Linear Equations of the first order - Nonlinear partial differential equations of the first order - Cauchy's method of characteristics - Compatible system of First order Equations - Solutions satisfying Given Condition, Jacobi's method. Applications: Solving Heat, Wave and Thermal equations.	13
II	Partial Differential Equations of the Second Order The Origin of Second Order Equations - Linear partial Differential Equations with constant coefficients - Equations with variable coefficients - Separation of variables - The method of Integral Transforms - Non linear equations of the second order-Applications: Solving one dimensional equations- Vibrations of string.	13
III	Laplace's Equation Elementary solutions of Laplace equation - Families of Equipotential Surfaces - Boundary value problems - Separation of variables Problems with Axial Symmetry - The Theory of Green's Function for Laplace Equation-Applications: Solving Heat equations.	13
IV	The Wave Equation The Occurrence of the wave equation in Physics - Elementary Solutions of the One-dimensional Wave equations - Vibrating membrane, Application of the calculus of variations - Three dimensional problem General solutions of the Wave equation. Applications: Solving Laplace equations	13
V	The Diffusion Equation Elementary Solutions of the Diffusion Equation - Separation of variables - The use of Integral Transforms - The use of Green's functions. Applications: Solving non-homogeneous boundary value problems.	13
SCILAB Problems related to PARTIAL DIFFERENTIAL EQUATIONS have been included in Practical-III (21MAP21) and questions related to SCILAB excluded in PARTIAL DIFFERENTIAL EQUATIONS (21MAP09) in the questions. Questions related to Applications included in internal only and excluded in semester questions.		

Note: Distribution of marks: Problems 80%, Theory 20%

Teaching methods: PowerPoint Projection through LCD, Assignment and Discussion and Activity.

TEXT BOOKS

1. Ian Sneddon, "Elements of Partial Differential Equations", McGraw Hill International Book

Company, New Delhi, 1983.
Unit I : Chapter 2 (Sections 1-4, 7-9,12,13)
Unit II: Chapter 3 (Sections 1, 4, 5,9,10, 11)
Unit III: Chapter 4 (Sections 2-6, 8)
Unit IV: Chapter 5 (Sections 1,2, 4-6)
Unit V: Chapter 6 (Sections 3-6)

REFERENCE BOOKS

1. K. Sankara Rao, "Introduction to Partial Differential Equations", Second edition, Prentice-Hall of India, New Delhi,2006.
2. F. John, "Partial Differential Equations", 3rd Edition, Narosa, 1979.

WEB RESOURCES

WebLink: https://accessfreevpn.com/
https://pdf.wecabrio.com/partial-differential-equations-ian-sneddon.pdf

Applications Link:

Unit I: https://www.youtube.com/watch?v=RtVE2Gt-KQ4
Unit II: https://www.youtube.com/watch?v=tfNZBQbAg0I
Unit III: https://www.youtube.com/watch?v=VBn1diQCykQ
Unit IV: https://www.youtube.com/watch?v=ik2_5QVVLLA
Unit V:https://www.youtube.com/watch? v=50Tw6sBAYB8

MAPPING WITH PROGRAM OUTCOMES

$\mathbf{P O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7
$\mathbf{C O 1}$	S	S	M	S	M	M	M
$\mathbf{C O 2}$	S	S	M	S	S	S	S
$\mathbf{C O 3}$	S	S	S	M	M	S	M
$\mathbf{C O 4}$	M	M	M	S	S	S	S
$\mathbf{C O 5}$	S	S	S	M	M	S	M

S-Strong, M-Medium, L - Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
	Dr.S.Anuradha Name \& Signature	

Dr. S. ANURADHA,
M.Sc., MA B.A.M.Phu., PGDCA.,Ph.D.

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Sciance, Coimbatore-641028

Curriculum Development Ce! Hindusthan College of Arts \& Scie Coimbatore-641 028.

Course Code:	21MAP10	Course Title						Batch:	$\begin{aligned} & \hline \text { 2021-2022 } \\ & \text { and } \\ & \text { Onwards } \end{aligned}$
		MECHANICS						Semester:	II
Hrs/Week:	5	L	5	T	-	P	-	Credits:	4

COURSE OBJECTIVE:

1. To understand the concepts of generalized coordinates, virtual work,
2. To acquire the knowledge about Lagrange's equations.
3. To study the concept of Hamilton's Principle.
4. To gain the knowledge about Hamilton's equation and Hamilton - Jacobi theory.
5. To obtain knowledge about canonical transformations, Lagrange and Poisson brackets

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS
LEVEL		
CO 1	Understand and explain the basic concepts of the mechanical system, generalized Coordinates, work, energy and momentum	K2 \& K5
CO 2	Apply and determine the Lagrange's equations and integrals of motion with examples.	$\mathrm{K} 3 \& \mathrm{~K} 5$
CO 3	Analyze the Hamilton's Principle and other variational principles in the problems and deduct in practical situations	$\mathrm{K} 4 \& \mathrm{~K} 5$
CO 4	Determine the Hamilton Jacobi equation. CO 5	Illustrate and evaluate canonical transformations, conditions of canonicity of a transformation in terms of Lagrange and Poisson brackets.

K1- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate

21MAP10	MECHANICS	Sem: II
Unit No.	Topics	Hours
I	Introductory concepts: Mechanical system -Generalized Coordinates - Coplanar Motion - Constraints -Virtual Work-Energy and Momentum-Applications: Calculating the force, work done of several objects.	$\mathbf{1 3}$
II	Lagrange's equations: Introduction to Lagrange's equations- Derivations of Lagrange's Equations -Examples -Integrals of Motion-Applications: Finding the equation of motion.	$\mathbf{1 3}$
III	Hamilton's equations: Introduction to Hamilton's equations-Hamilton's methods- Action and Hamilton's Principle -Hamilton's Equations-Applications: Calculating the oscillation of simple pendulum.	$\mathbf{1 3}$
IV	Hamilton -Jacobi theory: Hamilton's Principle function -Hamilton-Jacobi Equation and waves of constant action -Separability-Applications: Solving Kepler problems.	$\mathbf{1 3}$
V	Canonical transformations: Differential forms and Generating Functions - Special transformation- Lagrange and Poisson Brackets-Applications: Determining the canonical nature of transformation of Phase space variables.	$\mathbf{1 3}$
Questions related to Applications included in internal only and excluded in semester questions.		

Note: Distribution of marks: Problems 20 \%, Theory 80%

Teaching methods: Power Point Projection through LCD, Assignment and Discussion and Activity.

TEXT BOOK

1. D.T.Greenwood, Classical Dynamics, Dover Publication, New York, 1997.

Unit I: Chapter 1 (Sections $1.1-1.5$)
Unit II: Chapter2 (Sections 2.1-2.3)
Unit III: Chapter 4 (Sections 4.1-4.2)
Unit IV: Chapter 5: (Sections 5.1-5.3)
Unit V: Chapter 6: (Sections 6.1-6.3)

REFERENCE BOOKS

1.F. Gantmacher, Lectures in Analytic Mechanics, MIR Publishers, Moscow, 1975.
2.I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall.

WEB RESOURCES

WebLink: https://www.scribd.com/doc/295198601/Greenwood-D-T-principles-of-
Dynamics-Prentice-Hall-1987

Application Link:

Unit I: https://www.youtube.com/watch?v=tJw_-gx-i-0
Unit II: https://www.youtube.com/watch?v=hwyhYtlU5vo
Unit III: https://www.youtube.com/watch?v=3VRAYeeL9m4
Unit IV: https://www.youtube.com/watch?v=PJQRAZzbhgA
Unit V: https://www.youtube.com/watch?v=tD8npSv9gwA

MAPPING WITH PROGRAM OUTCOMES

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
$\mathbf{C O 1}$	S	S	S	S	M	M	S
$\mathbf{C O 2}$	S	S	S	S	M	S	M
$\mathbf{C O 3}$	S	S	S	S	M	M	S
$\mathbf{C O 4}$	M	M	S	S	M	M	M
$\mathbf{C O 5}$	M	M	M	S	M	M	M

S-Strong, M-Medium, L - Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
	Dr.S.Anuradha Name \& Signature	

Dr. S. ANURADHA,
M.Sc., MA B.A.M.Phu., PGDCA.,Ph.D.

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Sciance, Coimbatore-641028

Curriculum Development Ce! Hindusthan College of Arts \& Scie Coimbatore-641 028.

Course Code:	21MAP11	Course Title				Batch:	2021-2022 and Onwards		
		OPTIMIZATION TECHNIQUES					Semester:	II	
Hrs/Week:	$\mathbf{5}$	L	$\mathbf{5}$	T	-		P	-	Credits:

COURSE OBJECTIVE:

1. To understand solving LPP using various methods.
2. To define and use optimization terminology in Dynamic problems.
3. To understand shortest route and shortest distance algorithms, Inventory models.
4. To identify the application of queuing theory in real life situation and methods of solving related problems.
5. To apply Monte Carlo simulations and generate random numbers.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO1	Explain and evaluate various techniques to solve real life problems expressed in terms of LPP.	K2 \&K5
CO 2	Construct and determine LPP through Dynamic Programming	K3\&K5
CO 3	Apply and explain the fundamental concept of Inventory control.	K3\&K5
CO 4	Understand and evaluate the queuing theory and classification of queue models	K2 \&K5
CO 5	Apply and evaluate Simulation problems.	KI- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate

SYLLABUS

21MAP11	OPTIMIZATION TECHNIQUES	Sem: II
Unit No.	Topics	Hours
I	Integer Programming Introduction - Integer Programming Formulations - Gomory's construction-Fractional cut method (all integer)-The Cutting - Plane Algorithm - Branch-and-Bound Technique - Zero- One Implicit Enumeration Algorithm-Applications: Formulating the real type word problems	$\mathbf{1 3}$
II	Dynamic Programming Introduction - The Recursive Equation Approach-Characteristic of Dynamic Programming-Dynamic Programming Algorithm - Solution of Discrete D.P.P - Some Applications- Solution of Linear Programming Problem by Dynamic Programming-Applications: Flight management problems in airline company	$\mathbf{1 3}$
III	Inventory Models: Introduction-Inventory Decisions-Cost Associated- with Inventories - Factors Affecting inventory - Economic Order Quantity-Deterministic Inventory Problems with No Shortages- Deterministic inventory Models with shortages-EOQ with Price Breaks-Multi Item Deterministic problems-Inventory Problems with Uncertain Demand- Applications: Production management and control of purchasing	$\mathbf{1 3}$
IV	Queuing Theory Introduction - Queuing System-Elements of Queuing System - Operating Characteristics of Queuing System - Classification of Queuing Models- Model-I (M/M/1):(os/FIFO), Model-II (M/M/1) : (N/FIFO), Model-III (M/M/C):(co/FIFO), Model-IV (M/M/C):(N/FIFO). Problems in above four models-Applications: structuring computer networks	$\mathbf{1 3}$
Vuestions related to Applications included in internal only and excluded in semester questions.		

Note: Distribution of marks: Problems 80 \%, Theory 20\%

Teaching methods: PowerPoint Projection through LCD, Assignment and Discussion and Activity.

TEXT BOOK

1. Kanti Swarup, P. K. Gupta, Man Mohan, "Operations Research", Sultan Chand \& Sons, Publishers, New Delhi.
Unit I: Chapter 7: Sections :7.1-7.8
Unit II: Chapter 13 : Sections: 13.1-13.7
Unit III: Chapter 19 : Sections: 19.1,19.4-19.13
Unit IV: Chapter 21 : Sections : 21.1-21.9
Unit V: Chapter 22 : Sections : 22.1-22.7

REFERENCE BOOKS

1. Prem Kumar Gupta, D. S. Hira , "Operations Research", Seventh Edition, S. Chand \& Company Pvt. Ltd, 2014.
2. R. Panneerselvam, "Operations Research", Second Edition, PHI Learning Private Limited, Delhi, 2015.

WEB RESOURCES

Web Link:
https://www.academia.edu/35271588/Operation_Research_An_Introduction_8th_Edition_H_A_Taha

Application Link:

Unit I: https://www.youtube.com/watch?v=a2QgdDk4Xjw
Unit II: https://www.youtube.com/watch?v=gPINoJ4YPt4
Unit III: https://www.youtube.com/watch?v=vMSARPybFxg
Unit IV: https://www.youtube.com/watch?v=lnU-Zw3NEEQ
Unit V: https://www.youtube.com/watch?v=rds2eYcFbZY

MAPPING WITH PROGRAM OUTCOMES

$\mathbf{P O}$	PO1	P02	PO3	PO4	PO5	PO6	PO7
$\mathbf{C O}$							
$\mathbf{C O 1}$	S	S	M	S	S	S	S
$\mathbf{C O 2}$	S	S	S	S	M	S	M
$\mathbf{C O 3}$	S	S	S	S	S	S	M
$\mathbf{C O 4}$	S	S	S	M	M	S	S
$\mathbf{C O 5}$	S	S	S	M	S	S	M

S-Strong, M-Medium, L - Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
	Dr.S.Anuradha Name \& Signature	

Dr. S. ANURADHA,
M.Sc., MA B.A.M.Phu., PGDCA.,Ph.D.

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Sciance, Coimbatore-641028

Curriculum Development Ce! Hindusthan College of Arts \& Scie Coimbatore-641 028.

Course Code:	21MAP12	Course Title				Batch:	2021-2022 and Onwards	
		MATHEMATICAL SOFTWARES -II						Semester:
II								
Hrs/Week:		L	$\mathbf{5}$	T	-	P	-	Credits:

COURSE OBJECTIVE:

1. To know the foundation for matrix manipulation, plotting functions
2. To carry out numerical computations and analysis.
3. To acquire the knowledge about the graphics and able to solve two dimensional expressions.
4. To calculate linear equations Eigen values and Eigen vectors.
5. To solve Numerical differentiation and Integration.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO1	Understand and explain the foundation for doing matrix manipulations, plotting of functions and data, implementation of algorithms, and creation of user interfaces.	K2 \&K5
CO2	Apply and determine the numerical sum and product concepts in problems.	K3 \& K5
CO3	Evaluate Two dimensional expressions.	K5
CO4	Identify and determine the matrices, Scalars and vectors and solve Linear system	K3 \& K5
CO5	Construct and evaluate Numerical operations on functions and Numerical integration.	K3 \&K5
K1- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate		

21MAP12	MATHEMATICAL SOFTWARES -II	Sem: II
Unit No.	Topics	Hours
I	Introduction to Mathematica: Running Mathematica-Numerical calculations-Building up calculations-Using the Mathematica system-Algebraic calculations-Symbolic mathematics Applications: Converting symbolic mathematics in computer program.	13
II	Numerical Mathematics: Basic operations - Numerical sums, product and integrals -Numerical equation solving - Numerical differential equations - Numerical optimization Manipulating numerical data - Statistics. Functions And Programs: Defining functions - Functions as procedures - Repetitive operations Transformation rules for functions.LISTS - Collecting objects together Making tables of values - Vectors and matrices - Getting pieces of lists Testing and searching list elements - Adding, removing and modifying list elements - Combining lists - Rearranging lists - ordering in listsApplications: Solving Linear equations.	13
III	Graphics: Basic plotting - options- Redrawing and Combining plots-Manipulating options- Three dimensional surface-Plots-Converting between types of Graphics. Input And Output In Notebooks: Entering Greek letters - Two dimensional inputs - Editing and evaluating two - Dimensional expressions - Entering formulas - Entering tables and matrices - subscripts, bars and other modifiers - Non-English characters and key boards - other mathematical Notation - Forms of input and output - mixing text and formulation - displaying and printing Mathematica notebooks. Advanced mathematics in Mathematica- Calculus-Applications: Converting geometrical objects by simple and symbolic construction.	13
IV	Linear Algebra : Constructing matrices - Getting pieces of matrices - Scalars, Vectors and Matrices - Operations on scalars, vectors and matrices - Multiplying Vectors and matrices - Matrix inversion - Basic matrix operations - Solving linear systems - Eigen values and Eigen vectors-Applications: Solving Functions, Vectors and Matrices	13
V	Numerical Operations On Data : Curve fitting - Approximate functions and Interpolation - Fourier Transforms. Numerical Operations On Functions : Numerical Integration - Numerical evaluation of sums and products Numerical Solution of Polynomial equations - Numerical root finding Numerical solution of Differential equations -Applications: Solving differentiation and Integral equations.	13
Questions related to Applications included in internal only and excluded in semester questions.		
Note: Distribution of marks: Problems 20 \%, Theory 80 \% Teaching methods: PowerPoint Projection through LCD, Assignment and Discussion and Activity.		

TEXT BOOKS

1.Stephen Wolfram, "The Mathematica Book" Fifth Edition, Wolfram media, Cambridge, 2003

Unit I: Chapter 1: (Sections 1.0.1-1.5.16)
Unit II: Chapter 1 (Sections 1.6.1-1.8.11)
Unit III: Chapter1 (Sections 1.10.1-1.10.11)
Unit IV: Chapter 3 (Sections 3.7.1-3.7.9)
Unit V: Chapter 3 (Sections 3.8.2-3.8.4, 3.9.3-3.9.7)
2.Pragati Gautam, Swapnil Verma, "Practical Mathematica",

REFERENCE BOOKS

1. Eugene Don, "Mathematica " (Schaum's outline) " Mc.Graw Hill.
2. .PaulWellin, "programming with Mathematica"Cambredge University press.

WEB RESOURCES

WebLink:
https://www.wolfram.com/mathematica/online/?src=google\&420\&gclid=Cj0KCQjw2NyFBhDoARIsA MtHtZ4mW07Z5gQQtvHzNPuhBvGte1unPuHHlS9UYyrbTMv-NBcm44LqCDsaAikOEALw_wcB
http://deptche.ccu.edu.tw/Chemistry/Chem_Math/Mathematica_V5_Book.pdf

Applications Link:

Unit I: https://www.youtube.com/watch?v=mXFDAz3S9Uk
Unit II: https://www.youtube.com/watch?v=HDpgtSINY1k
Unit III: https://www.youtube.com/watch?v=SrT2tPP2f84
Unit IV: https://www.youtube.com/watch?v=-y46bavPZ-c
Unit V: https://www.youtube.com/watch?v=7d7pN5dd6sk

MAPPING WITH PROGRAM OUTCOMES

$\mathbf{P O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7
$\mathbf{C O 1}$	S	S	S	S	S	S	S
$\mathbf{C O 2}$	S	M	S	M	M	S	M
$\mathbf{C O 3}$	S	S	S	S	S	S	M
$\mathbf{C O 4}$	S	S	S	S	S	M	S
$\mathbf{C O 5}$	S	S	S	S	S	S	S

S-Strong, M- Medium, L-Low

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Course Designed by	Verified by HOD	Approved by CDC Co-ordinator
	Dr.S.Anuradha Name \& Signature	

Dr. S. ANURADHA,
M.Sc., MA B.A.M.Phu., PGDCA.,Ph.D.

Professor \& Head,
PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Sciance, Coimbatore-641028

Curriculum Development Ce! Hindusthan College of Arts \& Scie Coimbatore-641 028.

Course Code:	21MAP13	Course Title						Batch:	$\begin{gathered} \hline 2021- \\ 2022 \\ \text { and } \\ \text { Onwar } \\ \text { ds } \\ \hline \end{gathered}$
		PRACTICAL-IIMATHEMATICAL SOFTWARES LAB- II						Semester:	
Hrs/Week:	4	L	-	T	-	P	5	Credits:	2

COURSE OBJECTIVE:

1. To enable the students to solve problems in MATHEMATICA using different numerical methods
2. To make the mathematical calculations simpler
3. To variability applications using MATHEMATICA programs.
4. To able to model the problems in MATHEMATICA
5. To understand the concept of Graphics, Two dimensional and Three-dimensional Plots.

COURSE OUTCOMES (CO)

S.No	COURSE OUTCOME	BLOOMS LEVEL
CO1	Understand the foundations of MATHEMATICA and evaluate equations using MATHEMATICA.	$\mathrm{K} 2 \&$ K5
CO2	Examine and evaluate programs in MATHEMATICA. Evaluate, Analyze and plot results.	$\mathrm{K} 4 \&$ K5
CO3	Evaluate Numerical Calculations CO4Identify and determine the Mathematical functions and Algebraic calculations.	K3 \&K5
CO5	Construct and evaluate Two dimensional and three-dimensional plots.	K3\&K5
K1- Remember, K2- Understand, K3- Apply, K4-Analyze, K5- Evaluate		

SYLLABUS

1. Using MATHEMATICA to compute the area bounded by the curves $f(x)=1-x 2$ and $g(x)=$ x2-3x2.
2. Sketch the Sphere $x^{2}+y^{2}+z^{2}=14$ and its tangent plane at the point $(1,2,3)$ by using MATHEMATICA
3. Using MATHEMATICA, plot the (five) solutions for : $d^{2} y / d x^{2}+0.3 d y / d x+\sin y=0$ with $0 \leq x \leq 30$ and using initial conditions $y^{\prime}(0)=0, y(0)=-2,-1,0,1$ and 2 .
4. Solve the differential equation $d y / d x=1+1 / 2 \mathrm{y}^{2}, \mathrm{y}(0)=1,0 \leq \mathrm{x} \leq 1$ with D Solve and ND

Solve and compare the results.
5.Find the Numerical Calculations by using MATHEMATICA
6. Find the Mathematical Functions by using MATHEMATICA
7. Do Algebraic Calculations by using MATHEMATICA
8. Find the Symbolic Mathematics by using MATHEMATICA
9. Evaluate Lists by using MATHEMATICA
10. Using MATHEMATICA, Graphics-Two Dimensional Plots
11. Using MATHEMATICA, Graphics - Three Dimensional Plots
12. Using MATHEMATICA, Input and Output in Notebooks

Note: IE 50 Marks and EE 50 Marks

Teaching Methods: PowerPoint Projection through LCD, Assignment and Discussion and Activity.

WEB RESOURCES

Web link:

1. http://deptche.ccu.edu.tw/Chemistry/Chem_Math/Mathematica_V5_Book.pdf
2. http://dsc.du.ac.in/wp-content/uploads/2020/04/CAS-Theory-SEC-.pdf

MAPPING WITH PROGRAM OUTCOMES

$\mathbf{P O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	S	S	S	S
$\mathrm{CO2}$	S	M	S	M	S	S	M
$\mathrm{CO3}$	M	S	S	S	M	S	S
$\mathrm{CO4}$	S	S	M	S	S	M	M
$\mathrm{CO5}$	S	S	S	M	S	S	M

S- Strong; M-Medium; L-Low.

ASSESSMENT PATTERN

Follows common pattern of Internal and External assessment, suggested in the Regulations.

Professor \& Head, PG \& Research Dept. of Mathematics, Hindusthan College of Arts \& Science, Coimbatore - 641028

Co-ordinator Curriculum Development Hindusthan College of Arts \& ? Coimbatore-641 028.

